Department of Experimental and Clinical Medicine, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
Data Analytics Research Center, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy.
Genes (Basel). 2023 Oct 7;14(10):1915. doi: 10.3390/genes14101915.
Over the years, network analysis has become a promising strategy for analysing complex system, i.e., systems composed of a large number of interacting elements. In particular, multilayer networks have emerged as a powerful framework for modelling and analysing complex systems with multiple types of interactions. Network analysis can be applied to pharmacogenomics to gain insights into the interactions between genes, drugs, and diseases. By integrating network analysis techniques with pharmacogenomic data, the goal consists of uncovering complex relationships and identifying key genes to use in pathway enrichment analysis to figure out biological pathways involved in drug response and adverse reactions. In this study, we modelled omics, disease, and drug data together through multilayer network representation. Then, we mined the multilayer network with a community detection algorithm to obtain the top communities. After that, we used the identified list of genes from the communities to perform pathway enrichment analysis (PEA) to figure out the biological function affected by the selected genes. The results show that the genes forming the top community have multiple roles through different pathways.
多年来,网络分析已成为分析复杂系统的一种很有前途的策略,即由大量相互作用的元素组成的系统。特别是,多层网络已经成为一种强大的框架,用于对具有多种相互作用类型的复杂系统进行建模和分析。网络分析可以应用于药物基因组学,以深入了解基因、药物和疾病之间的相互作用。通过将网络分析技术与药物基因组学数据相结合,目标是揭示复杂的关系并识别关键基因,用于通路富集分析,以确定参与药物反应和不良反应的生物学途径。在这项研究中,我们通过多层网络表示来对组学、疾病和药物数据进行建模。然后,我们使用社区检测算法挖掘多层网络,以获得顶级社区。之后,我们使用从社区中识别出的基因列表进行通路富集分析 (PEA),以确定受选定基因影响的生物学功能。结果表明,形成顶级社区的基因通过不同的途径具有多种作用。