Suppr超能文献

深度增强分子动力学:使用概率贝叶斯深度神经网络生成的高斯增强势加速分子模拟。

Deep Boosted Molecular Dynamics: Accelerating Molecular Simulations with Gaussian Boost Potentials Generated Using Probabilistic Bayesian Deep Neural Network.

机构信息

Center for Computational Biology and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States.

出版信息

J Phys Chem Lett. 2023 Jun 1;14(21):4970-4982. doi: 10.1021/acs.jpclett.3c00926. Epub 2023 May 23.

Abstract

We have developed a new deep boosted molecular dynamics (DBMD) method. Probabilistic Bayesian neural network models were implemented to construct boost potentials that exhibit Gaussian distribution with minimized anharmonicity, thereby allowing for accurate energetic reweighting and enhanced sampling of molecular simulations. DBMD was demonstrated on model systems of alanine dipeptide and the fast-folding protein and RNA structures. For alanine dipeptide, 30 ns DBMD simulations captured up to 83-125 times more backbone dihedral transitions than 1 μs conventional molecular dynamics (cMD) simulations and were able to accurately reproduce the original free energy profiles. Moreover, DBMD sampled multiple folding and unfolding events within 300 ns simulations of the chignolin model protein and identified low-energy conformational states comparable to previous simulation findings. Finally, DBMD captured a general folding pathway of three hairpin RNAs with the GCAA, GAAA, and UUCG tetraloops. Based on a deep learning neural network, DBMD provides a powerful and generally applicable approach to boosting biomolecular simulations. DBMD is available with open source in OpenMM at https://github.com/MiaoLab20/DBMD/.

摘要

我们开发了一种新的深度增强分子动力学(DBMD)方法。我们实现了概率贝叶斯神经网络模型来构建增强势,这些增强势表现出最小非谐性的高斯分布,从而能够实现分子模拟的精确能量重加权和增强采样。我们在丙氨酸二肽和快速折叠蛋白和 RNA 结构的模型系统上验证了 DBMD。对于丙氨酸二肽,30 ns 的 DBMD 模拟比 1 μs 的传统分子动力学(cMD)模拟多捕捉到 83-125 倍的主链二面角转变,并且能够准确地再现原始的自由能曲线。此外,DBMD 在 300 ns 的 chignolin 模型蛋白模拟中采样了多个折叠和展开事件,并识别出与之前模拟结果相媲美的低能构象状态。最后,DBMD 捕获了具有 GCAA、GAAA 和 UUCG 四核苷酸环的三个发夹 RNA 的一般折叠途径。基于深度学习神经网络,DBMD 为增强生物分子模拟提供了一种强大且普遍适用的方法。DBMD 可在 OpenMM 中通过 https://github.com/MiaoLab20/DBMD/ 获得开源。

相似文献

3
Gaussian Accelerated Molecular Dynamics in OpenMM.OpenMM 中的高斯加速分子动力学。
J Phys Chem B. 2022 Aug 11;126(31):5810-5820. doi: 10.1021/acs.jpcb.2c03765. Epub 2022 Jul 27.
4
Gaussian Accelerated Molecular Dynamics in NAMD.NAMD中的高斯加速分子动力学
J Chem Theory Comput. 2017 Jan 10;13(1):9-19. doi: 10.1021/acs.jctc.6b00931. Epub 2016 Dec 30.
6
Population based reweighting of scaled molecular dynamics.基于人口的比例分子动力学再加权。
J Phys Chem B. 2013 Oct 24;117(42):12759-68. doi: 10.1021/jp401587e. Epub 2013 Jul 11.

引用本文的文献

1
Enhanced Sampling with Machine Learning.利用机器学习的增强采样
Annu Rev Phys Chem. 2024 Jun;75(1):347-370. doi: 10.1146/annurev-physchem-083122-125941. Epub 2024 Jun 14.
2
Molecular Dynamics Activation of γ-Secretase for Cleavage of the Notch1 Substrate.分子动力学激活 γ-分泌酶以切割 Notch1 底物。
ACS Chem Neurosci. 2023 Dec 6;14(23):4216-4226. doi: 10.1021/acschemneuro.3c00594. Epub 2023 Nov 9.

本文引用的文献

2
Gaussian Accelerated Molecular Dynamics in OpenMM.OpenMM 中的高斯加速分子动力学。
J Phys Chem B. 2022 Aug 11;126(31):5810-5820. doi: 10.1021/acs.jpcb.2c03765. Epub 2022 Jul 27.
6
Gaussian accelerated molecular dynamics (GaMD): principles and applications.高斯加速分子动力学(GaMD):原理与应用
Wiley Interdiscip Rev Comput Mol Sci. 2021 Sep-Oct;11(5). doi: 10.1002/wcms.1521. Epub 2021 Mar 1.
8
Molecular Dynamics Simulation for All.分子动力学模拟概览。
Neuron. 2018 Sep 19;99(6):1129-1143. doi: 10.1016/j.neuron.2018.08.011.
9
RNA force field with accuracy comparable to state-of-the-art protein force fields.具有与最先进蛋白质力场相媲美的精度的 RNA 力场。
Proc Natl Acad Sci U S A. 2018 Feb 13;115(7):E1346-E1355. doi: 10.1073/pnas.1713027115. Epub 2018 Jan 29.
10
Gaussian Accelerated Molecular Dynamics in NAMD.NAMD中的高斯加速分子动力学
J Chem Theory Comput. 2017 Jan 10;13(1):9-19. doi: 10.1021/acs.jctc.6b00931. Epub 2016 Dec 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验