文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生物评价、植物化学成分筛检与叶提取物载入纳米粒子的制作。

Biological Evaluation, Phytochemical Screening, and Fabrication of Leaves Extract-Loaded Nanoparticles.

机构信息

Department of Biochemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan.

Department of Chemistry, University of Malakand, Lower Dir, Chakdara 18800, Pakistan.

出版信息

Molecules. 2022 Jul 23;27(15):4707. doi: 10.3390/molecules27154707.


DOI:10.3390/molecules27154707
PMID:35897890
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9369860/
Abstract

is a medicinally important plant, and by virtue of its rich phytochemical composition, this plant is widely used as essential component in traditional medication systems. Due to its wide range of medicinal applications, the extract-loaded chitosan (Ext+Ch), extract-loaded PEG (Ext+PEG), and extract-loaded locust bean gum (Ext+LGB) nanoparticles (NPs) were prepared in the present study. The prepared NPs were then evaluated for their antibacterial, antioxidant, and antidiabetic potentials. Antibacterial activities of the crude extract and the synthesized NPs were performed following standard procedures reported in the literature. The antioxidant capabilities of extract and NPs were evaluated using DPPH free radical scavenging assay. The antidiabetic potential of the samples was evaluated against α-amylase and α-glucosidase. Ext+PEG NPs showed more potent antibacterial activity against the selected strains of bacteria with the highest activity against . The lowest antibacterial potential was observed for Ext+LGB NPs. The Ext+LGB NPs IC value of 39 μg/mL was found to be the most potent inhibitor of DPPH free radicals. Ext+LGB NPs showed a greater extent of inhibition against α-glucosidase and α-amylase with an IC of 83 and 78 μg/mL, whereas for the standard acarbose the IC values recorded against the mentioned enzymes were 69 and 74 μg/mL, respectively. A high concentration of phenolics and flavonoids in the crude extract was confirmed through TPC and TFC tests, HPLC profiling, and GC-MS analysis. It was considered that the observed antibacterial, antidiabetic, and antioxidant potential might be due the presence of these phenolics and flavonoids detected. The plant could thus be considered as a potential candidate to be used as a remedy of the mentioned health complications. However, further research in this regard is needed to isolate the exact responsible compounds of the observed biological potentials exhibited by the crude extract. Further, toxicity and pharmacological evaluations in animal models are also needed to establish the safety or toxicity profile of the plant.

摘要

是一种药用价值很高的植物,由于其丰富的植物化学成分,这种植物被广泛用作传统药物体系的重要成分。由于其广泛的药用应用,本研究制备了负载提取物的壳聚糖(Ext+Ch)、负载提取物的聚乙二醇(Ext+PEG)和负载提取物的刺槐豆胶(Ext+LGB)纳米粒子(NPs)。然后,评估了所制备的 NPs 的抗菌、抗氧化和抗糖尿病潜力。按照文献中报道的标准程序进行粗提物和合成 NPs 的抗菌活性测试。使用 DPPH 自由基清除测定法评估提取物和 NPs 的抗氧化能力。评估样品对α-淀粉酶和α-葡萄糖苷酶的抗糖尿病潜力。Ext+PEG NPs 对选定的细菌菌株表现出更强的抗菌活性,对 的活性最高。Ext+LGB NPs 的抗菌活性最低。Ext+LGB NPs 的 IC 值为 39 μg/mL,是最有效的 DPPH 自由基抑制剂。Ext+LGB NPs 对α-葡萄糖苷酶和α-淀粉酶的抑制作用更强,IC 值分别为 83 和 78 μg/mL,而标准阿卡波糖对上述两种酶的 IC 值分别为 69 和 74 μg/mL。通过 TPC 和 TFC 测试、HPLC 分析和 GC-MS 分析证实,粗提取物中含有高浓度的酚类和类黄酮。认为观察到的抗菌、抗糖尿病和抗氧化潜力可能是由于存在这些酚类和类黄酮。因此,该植物可以被认为是一种有潜力的候选药物,可用于治疗上述健康并发症。然而,需要在这方面进行进一步的研究,以分离出粗提取物中表现出的观察到的生物潜力的确切责任化合物。此外,还需要在动物模型中进行毒性和药理学评估,以确定该植物的安全性或毒性特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/4051cedad527/molecules-27-04707-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/b7e567083dab/molecules-27-04707-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/77bfe72e0d2f/molecules-27-04707-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/797053ea5982/molecules-27-04707-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/835b82fa6c8c/molecules-27-04707-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/391ebf203265/molecules-27-04707-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/36fa7aadc3d5/molecules-27-04707-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/c40503c9fa89/molecules-27-04707-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/4051cedad527/molecules-27-04707-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/b7e567083dab/molecules-27-04707-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/77bfe72e0d2f/molecules-27-04707-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/797053ea5982/molecules-27-04707-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/835b82fa6c8c/molecules-27-04707-g004a.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/391ebf203265/molecules-27-04707-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/36fa7aadc3d5/molecules-27-04707-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/c40503c9fa89/molecules-27-04707-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cedf/9369860/4051cedad527/molecules-27-04707-g008.jpg

相似文献

[1]
Biological Evaluation, Phytochemical Screening, and Fabrication of Leaves Extract-Loaded Nanoparticles.

Molecules. 2022-7-23

[2]
Phytochemical Composition, Antibacterial, Antioxidant and Antidiabetic Potentials of Bark.

Molecules. 2022-9-26

[3]
Efficacy of Euphorbia helioscopia in context to a possible connection between antioxidant and antidiabetic activities: a comparative study of different extracts.

BMC Complement Med Ther. 2021-2-12

[4]
Phytochemistry, Biological, and Toxicity Study on Aqueous and Methanol Extracts of .

ScientificWorldJournal. 2023

[5]
(Forssk.) Moq: A Good Source of Phytochemicals with Antibacterial, Antioxidant, and Antidiabetic Potential.

Molecules. 2022-5-30

[6]
α-amylase and α-glucosidase Inhibition, Antioxidant, Anti- Inflammatory Activity and GC-MS Profiling of Blume.

Comb Chem High Throughput Screen. 2020

[7]
In Vitro Antibacterial, Antioxidant, Anticholinesterase, and Antidiabetic Activities and Chemical Composition of .

Molecules. 2023-11-27

[8]
Antioxidant, α-Amylase and α-Glucosidase Inhibitory Activities and Potential Constituents of Bark.

Molecules. 2019-2-9

[9]
Chemical composition, in vitro antioxidant, anticholinesterase, and antidiabetic potential of essential oil of Elaeagnus umbellata Thunb.

BMC Complement Med Ther. 2021-2-22

[10]
Analysis of Phenolic and Flavonoid Content, -Amylase Inhibitory and Free Radical Scavenging Activities of Some Medicinal Plants.

ScientificWorldJournal. 2022

引用本文的文献

[1]
Plant and marine-derived natural products: sustainable pathways for future drug discovery and therapeutic development.

Front Pharmacol. 2025-1-6

[2]
Comparative analysis of petal phytoconstituents reveals insights into the characteristics of an under-reported edible old rose variety native to Chongqing, China.

Heliyon. 2024-12-26

[3]
Polygenic anti-cancer activity of in prostate cancer induced animal model.

Toxicol Rep. 2024-10-22

[4]
Synthesis and characterization of activated carbon-supported magnetic nanocomposite (MNPs-OLAC) obtained from okra leaves as a nanocarrier for targeted delivery of morin hydrate.

Front Pharmacol. 2024-10-9

[5]
In vitro antioxidant activity of alginate nanoparticles encapsulating the aqueous extract of .

Turk J Chem. 2023-6-5

[6]
Optimization of cationic nanoparticles stabilized by poloxamer 188: A potential approach for improving the biological activity of .

Heliyon. 2023-11-21

[7]
and evaluation of alginate hydrogel-based wound dressing loaded with green chemistry cerium oxide nanoparticles.

Front Chem. 2023-11-23

[8]
Screening of Tyrosinase, Xanthine Oxidase, and α-Glucosidase Inhibitors from Polygoni Cuspidati Rhizoma et Radix by Ultrafiltration and HPLC Analysis.

Molecules. 2023-5-18

[9]
Chitosan-Coated Solid Lipid Nanoparticles as an Efficient Avenue for Boosted Biological Activities of : Antioxidant, Antibacterial, and Anticancer Potential.

Molecules. 2023-4-19

[10]
Hyperglycemia-associated Alzheimer's-like symptoms and other behavioral effects attenuated by L. Extract in alloxan-induced diabetic rats.

Front Pharmacol. 2022-12-16

本文引用的文献

[1]
Anti-Inflammatory, Analgesic and Antioxidant Potential of New (2,3)-2-(4-isopropylbenzyl)-2-methyl-4-nitro-3-phenylbutanals and Their Corresponding Carboxylic Acids through In Vitro, In Silico and In Vivo Studies.

Molecules. 2022-6-24

[2]
Antioxidant Molecules Isolated from Edible Prostrate Knotweed: Rational Derivatization to Produce More Potent Molecules.

Oxid Med Cell Longev. 2022

[3]
An Extensive Pharmacological Evaluation of New Anti-Cancer Triterpenoid (Nummularic Acid) from through In Vitro, In Silico, and In Vivo Studies.

Molecules. 2022-4-12

[4]
Stress Driven Discovery of Natural Products From Actinobacteria with Anti-Oxidant and Cytotoxic Activities Including Docking and ADMET Properties.

Int J Mol Sci. 2021-10-22

[5]
Guaiane-type sesquiterpenoids from Cinnamomum migao H. W. Li: And their anti-inflammatory activities.

Phytochemistry. 2021-10

[6]
Three new guaiane-type sesquiterpenoids and a monoterpenoid from Merr.

Nat Prod Res. 2022-7

[7]
Phytochemical study of Ligularia subspicata and valuation of its anti-inflammatory activity.

Fitoterapia. 2021-1

[8]
Engineering precision nanoparticles for drug delivery.

Nat Rev Drug Discov. 2021-2

[9]
Naringin and naringenin as anticancer agents and adjuvants in cancer combination therapy: Efficacy and molecular mechanisms of action, a comprehensive narrative review.

Pharmacol Res. 2021-9

[10]
Phytochemical Composition, Antioxidant, and Antimicrobial Attributes of Different Solvent Extracts from Buch.-Ham. ex. D. Don Leaves.

Biomolecules. 2019-8-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索