Department of Electrical Engineering, Stanford University, Stanford, California 94305, United States.
Department of Materials Science & Engineering, Stanford University, Stanford, California 94305, United States.
Nano Lett. 2022 Aug 10;22(15):6135-6140. doi: 10.1021/acs.nanolett.2c01344. Epub 2022 Jul 28.
Real-time thermal sensing on flexible substrates could enable a plethora of new applications. However, achieving fast, sub-millisecond response times even in a single sensor is difficult, due to the thermal mass of the sensor and encapsulation. Here, we fabricate flexible monolayer molybdenum disulfide (MoS) temperature sensors and arrays, which can detect temperature changes within a few microseconds, over 100× faster than flexible thin-film metal sensors. Thermal simulations indicate the sensors' response time is only limited by the MoS interfaces and encapsulation. The sensors also have high temperature coefficient of resistance, ∼1-2%/K and stable operation upon cycling and long-term measurement when they are encapsulated with alumina. These results, together with their biocompatibility, make these devices excellent candidates for biomedical sensor arrays and many other Internet of Things applications.
在柔性衬底上进行实时热感可能会带来大量新的应用。然而,由于传感器和封装的热质量,即使在单个传感器中,要实现快速的亚毫秒级响应时间也非常困难。在这里,我们制造了柔性单层二硫化钼 (MoS) 温度传感器及其阵列,它们可以在几微秒内检测到温度变化,比柔性薄膜金属传感器快 100 多倍。热模拟表明,传感器的响应时间仅受 MoS 界面和封装的限制。当用氧化铝封装时,传感器还具有较高的电阻温度系数,约为 1-2%/K,并且在循环和长期测量时具有稳定的工作性能。这些结果,再加上它们的生物相容性,使得这些器件成为生物医学传感器阵列和许多其他物联网应用的优秀候选者。