Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, CA, 92697-3900, USA.
Institute for Chemical Research, Kyoto University Gokasho, Uji, Kyoto, 611-0011, Japan.
Chembiochem. 2022 Oct 6;23(19):e202200384. doi: 10.1002/cbic.202200384. Epub 2022 Aug 25.
Nitrogenase employs a sophisticated electron transfer system and a Mo-Fe-S-C cofactor, designated the M-cluster [(cit)MoFe S C]), to reduce atmospheric N to bioaccessible NH . Previously, we have shown that the cofactor-free form of nitrogenase can be repurposed as a protein scaffold for the incorporation of a synthetic Fe-S cluster [Fe S (SEt) ] . Here, we demonstrate the utility of an asymmetric Mo-Fe-S cluster [Cp*MoFe S (SH)] as an alternative artificial cofactor upon incorporation into the cofactor-free nitrogenase scaffold. The resultant semi-artificial enzyme catalytically reduces C H to C H , and CN into short-chain hydrocarbons, yet it is clearly distinct in activity from its [Fe S (SEt) ] -reconstituted counterpart, pointing to the possibility to employ molecular design and cluster synthesis strategies to further develop semi-artificial or artificial systems with desired catalytic activities.
固氮酶采用复杂的电子转移系统和 Mo-Fe-S-C 辅因子(命名为 M 簇[(cit)MoFeS C]),将大气 N 还原为生物可利用的 NH 。 先前,我们已经表明,固氮酶的无辅因子形式可以被重新用作蛋白质支架,用于掺入合成的 Fe-S 簇[Fe S(SEt)]。 在这里,我们展示了不对称 Mo-Fe-S 簇[Cp*MoFe S(SH)]作为替代人工辅因子的用途,该辅因子可掺入无辅因子固氮酶支架中。 所得的半人工酶催化将 C H 还原为 C H ,并将 CN 转化为短链烃,但与用[Fe S(SEt)]重建的对应物相比,其活性明显不同,这表明可以采用分子设计和簇合成策略来进一步开发具有所需催化活性的半人工或人工系统。