Suppr超能文献

肠道微生物生成的短链脂肪酸通过组蛋白去乙酰化酶诱导肠道上皮细胞的生物钟节律。

Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms.

机构信息

Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, University of Virginia, Charlottesville, Virginia.

Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia.

出版信息

Gastroenterology. 2022 Nov;163(5):1377-1390.e11. doi: 10.1053/j.gastro.2022.07.051. Epub 2022 Aug 4.

Abstract

BACKGROUND & AIMS: The circadian clock orchestrates ∼24-hour oscillations of gastrointestinal epithelial structure and function that drive diurnal rhythms in gut microbiota. Here, we use experimental and computational approaches in intestinal organoids to reveal reciprocal effects of gut microbial metabolites on epithelial timekeeping by an epigenetic mechanism.

METHODS

We cultured enteroids in media supplemented with sterile supernatants from the altered Schaedler Flora (ASF), a defined murine microbiota. Circadian oscillations of bioluminescent PER2 and Bmal1 were measured in the presence or absence of individual ASF supernatants. Separately, we applied machine learning to ASF metabolomics to identify phase-shifting metabolites.

RESULTS

Sterile filtrates from 3 of 7 ASF species (ASF360 Lactobacillus intestinalis, ASF361 Ligilactobacillus murinus, and ASF502 Clostridium species) induced minimal alterations in circadian rhythms, whereas filtrates from 4 ASF species (ASF356 Clostridium species, ASF492 Eubacterium plexicaudatum, ASF500 Pseudoflavonifactor species, and ASF519 Parabacteroides goldsteinii) induced profound, concentration-dependent phase shifts. Random forest classification identified short-chain fatty acid (SCFA) (butyrate, propionate, acetate, and isovalerate) production as a discriminating feature of ASF "shifters." Experiments with SCFAs confirmed machine learning predictions, with a median phase shift of 6.2 hours in murine enteroids. Pharmacologic or botanical histone deacetylase (HDAC) inhibitors yielded similar findings. Further, mithramycin A, an inhibitor of HDAC inhibition, reduced SCFA-induced phase shifts by 20% (P < .05) and conditional knockout of HDAC3 in enteroids abrogated butyrate effects on Per2 expression. Key findings were reproducible in human Bmal1-luciferase enteroids, colonoids, and Per2-luciferase Caco-2 cells.

CONCLUSIONS

Gut microbe-generated SCFAs entrain intestinal epithelial circadian rhythms by an HDACi-dependent mechanism, with critical implications for understanding microbial and circadian network regulation of intestinal epithelial homeostasis.

摘要

背景与目的

生物钟协调胃肠道上皮结构和功能的约 24 小时波动,从而驱动肠道微生物群的昼夜节律。在这里,我们使用肠类器官中的实验和计算方法,揭示了肠道微生物代谢物通过表观遗传机制对上皮计时产生的相互影响。

方法

我们在补充有经过消毒的改变的 Schaedler 菌群(ASF)上清液的培养基中培养肠类器官。在存在或不存在 ASF 上清液的情况下,测量生物发光 PER2 和 Bmal1 的昼夜节律波动。另外,我们应用机器学习对 ASF 代谢组学进行分析,以确定影响相位的代谢物。

结果

ASF 中 7 个种的 3 个种(ASF360 肠道乳杆菌、ASF361 黏乳酸杆菌和 ASF502 梭菌属)的无菌滤液仅引起昼夜节律的微小改变,而 ASF 中的 4 个种(ASF356 梭菌属、ASF492 真杆菌属、ASF500 拟杆菌属和 ASF519 巴拉特氏菌属)的滤液则引起明显的、浓度依赖性的相位移动。随机森林分类确定短链脂肪酸(SCFA)(丁酸、丙酸、乙酸和异戊酸)的产生是 ASF“移位器”的一个区分特征。SCFA 的实验证实了机器学习的预测,在鼠类肠类器官中产生了中位数为 6.2 小时的相位移动。药理学或植物源性组蛋白去乙酰化酶(HDAC)抑制剂也得到了类似的结果。此外,米托蒽醌 A,一种 HDAC 抑制剂,可使 SCFA 诱导的相位移动减少 20%(P<.05),并且肠类器官中 HDAC3 的条件敲除可消除丁酸盐对 Per2 表达的影响。这些关键发现在人 Bmal1-荧光素酶肠类器官、类器官和 Per2-荧光素酶 Caco-2 细胞中具有重现性。

结论

肠道微生物产生的 SCFAs 通过 HDACi 依赖的机制使肠道上皮细胞的昼夜节律同步,这对于理解微生物和昼夜节律网络对肠道上皮细胞稳态的调节具有重要意义。

相似文献

1
Histone Deacetylase Inhibition by Gut Microbe-Generated Short-Chain Fatty Acids Entrains Intestinal Epithelial Circadian Rhythms.
Gastroenterology. 2022 Nov;163(5):1377-1390.e11. doi: 10.1053/j.gastro.2022.07.051. Epub 2022 Aug 4.
2
The SCFA butyrate stimulates the epithelial production of retinoic acid via inhibition of epithelial HDAC.
Am J Physiol Gastrointest Liver Physiol. 2016 Jun 1;310(11):G1138-46. doi: 10.1152/ajpgi.00411.2015. Epub 2016 May 5.
6
Robust circadian rhythms in organoid cultures from PERIOD2::LUCIFERASE mouse small intestine.
Dis Model Mech. 2014 Sep;7(9):1123-30. doi: 10.1242/dmm.014399. Epub 2014 Jul 4.
7
Night-time feeding of Bmal1-/- mice restores SCFA rhythms and their effect on ghrelin.
J Endocrinol. 2020 Apr;245(1):155-164. doi: 10.1530/JOE-20-0011.

引用本文的文献

1
Parental diet and offspring health: a role for the gut microbiome via epigenetics.
Nat Rev Gastroenterol Hepatol. 2025 Sep 3. doi: 10.1038/s41575-025-01106-3.
2
An overview of basic pathophysiological interactions between gut bacteria and their host.
Front Nutr. 2025 Aug 12;12:1565609. doi: 10.3389/fnut.2025.1565609. eCollection 2025.
4
The modulatory role of short-chain fatty acids on peripheral circadian gene expression: a systematic review.
Front Physiol. 2025 Jul 14;16:1595057. doi: 10.3389/fphys.2025.1595057. eCollection 2025.
6
Fucoidan as a therapeutic agent for ulcerative colitis: mechanisms of action and modulation of the gut microbiota.
Front Cell Infect Microbiol. 2025 Jul 10;15:1626614. doi: 10.3389/fcimb.2025.1626614. eCollection 2025.
7
Circadian rhythms of gut microbiota and plaque vulnerability: mechanisms and chrono-microbiota modulation interventions.
Gut Microbes. 2025 Dec;17(1):2532703. doi: 10.1080/19490976.2025.2532703. Epub 2025 Jul 12.
8
Circadian rhythm in gastrointestinal cancer: clinical applications and future perspectives.
Ann Med. 2025 Dec;57(1):2529571. doi: 10.1080/07853890.2025.2529571. Epub 2025 Jul 5.
9
Microbiota metabolites affect sleep as drivers of brain‑gut communication (Review).
Int J Mol Med. 2025 Sep;56(3). doi: 10.3892/ijmm.2025.5571. Epub 2025 Jul 4.
10
Dysfunctional circadian-driven dynamics in gut microbiota and tumor microenvironment.
Gut Microbes. 2025 Dec;17(1):2526716. doi: 10.1080/19490976.2025.2526716. Epub 2025 Jun 28.

本文引用的文献

1
Diet Diurnally Regulates Small Intestinal Microbiome-Epithelial-Immune Homeostasis and Enteritis.
Cell. 2020 Sep 17;182(6):1441-1459.e21. doi: 10.1016/j.cell.2020.08.027. Epub 2020 Sep 3.
2
Microbiota-derived metabolite promotes HDAC3 activity in the gut.
Nature. 2020 Oct;586(7827):108-112. doi: 10.1038/s41586-020-2604-2. Epub 2020 Jul 30.
4
The intestinal microbiota programs diurnal rhythms in host metabolism through histone deacetylase 3.
Science. 2019 Sep 27;365(6460):1428-1434. doi: 10.1126/science.aaw3134.
6
Interplay between Circadian Clock and Cancer: New Frontiers for Cancer Treatment.
Trends Cancer. 2019 Aug;5(8):475-494. doi: 10.1016/j.trecan.2019.07.002. Epub 2019 Aug 3.
7
Controlling Epithelial Polarity: A Human Enteroid Model for Host-Pathogen Interactions.
Cell Rep. 2019 Feb 26;26(9):2509-2520.e4. doi: 10.1016/j.celrep.2019.01.108.
8
Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health.
Microorganisms. 2019 Jan 31;7(2):41. doi: 10.3390/microorganisms7020041.
9
Crosstalk between metabolism and circadian clocks.
Nat Rev Mol Cell Biol. 2019 Apr;20(4):227-241. doi: 10.1038/s41580-018-0096-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验