Intravaia Jonathon T, Graham Trevon, Kim Hyun S, Nanda Himansu S, Kumbar Sangamesh G, Nukavarapu Syam P
Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.
Terasaki Institute, University of California, Los Angeles, CA, USA.
Curr Opin Biomed Eng. 2023 Mar;25. doi: 10.1016/j.cobme.2022.100439. Epub 2022 Dec 21.
Musculoskeletal injuries including bone defects continue to present a significant challenge in orthopedic surgery due to suboptimal healing. Bone reconstruction strategies focused on the use of biological grafts and bone graft substitutes in the form of biomaterials-based 3D structures in fracture repair. Recent advances in biomaterials science and engineering have resulted in the creation of intricate 3D bone-mimicking structures that are mechanically stable, biodegradable, and bioactive to support bone regeneration. Current efforts are focused on improving the biomaterial and implant physicochemical properties to promote interactions with the host tissue and osteogenesis. The "smart" biomaterials and their 3D structures are designed to actively interact with stem/progenitor cells and the extracellular matrix (ECM) to influence the local environment towards osteogenesis and tissue formation. This article will summarize such smart biomaterials and the methodologies to apply either internal or external stimuli to control the tissue healing microenvironment. A particular emphasis is also made on the use of smart biomaterials and strategies to create functional bioactive implants for bone defect repair and regeneration.
包括骨缺损在内的肌肉骨骼损伤,由于愈合欠佳,在骨科手术中仍然是一个重大挑战。骨重建策略侧重于在骨折修复中使用生物移植物和以生物材料为基础的3D结构形式的骨移植替代物。生物材料科学与工程的最新进展已促成了复杂的仿骨3D结构的创建,这些结构机械稳定、可生物降解且具有生物活性,以支持骨再生。目前的工作重点是改善生物材料和植入物的物理化学性质,以促进与宿主组织的相互作用和成骨作用。“智能”生物材料及其3D结构旨在与干细胞/祖细胞和细胞外基质(ECM)积极相互作用,以影响局部环境,促进成骨和组织形成。本文将总结此类智能生物材料以及应用内部或外部刺激来控制组织愈合微环境的方法。还特别强调了使用智能生物材料和策略来创建用于骨缺损修复和再生的功能性生物活性植入物。