Suppr超能文献

智能骨科生物材料与植入物

Smart Orthopedic Biomaterials and Implants.

作者信息

Intravaia Jonathon T, Graham Trevon, Kim Hyun S, Nanda Himansu S, Kumbar Sangamesh G, Nukavarapu Syam P

机构信息

Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA.

Terasaki Institute, University of California, Los Angeles, CA, USA.

出版信息

Curr Opin Biomed Eng. 2023 Mar;25. doi: 10.1016/j.cobme.2022.100439. Epub 2022 Dec 21.

Abstract

Musculoskeletal injuries including bone defects continue to present a significant challenge in orthopedic surgery due to suboptimal healing. Bone reconstruction strategies focused on the use of biological grafts and bone graft substitutes in the form of biomaterials-based 3D structures in fracture repair. Recent advances in biomaterials science and engineering have resulted in the creation of intricate 3D bone-mimicking structures that are mechanically stable, biodegradable, and bioactive to support bone regeneration. Current efforts are focused on improving the biomaterial and implant physicochemical properties to promote interactions with the host tissue and osteogenesis. The "smart" biomaterials and their 3D structures are designed to actively interact with stem/progenitor cells and the extracellular matrix (ECM) to influence the local environment towards osteogenesis and tissue formation. This article will summarize such smart biomaterials and the methodologies to apply either internal or external stimuli to control the tissue healing microenvironment. A particular emphasis is also made on the use of smart biomaterials and strategies to create functional bioactive implants for bone defect repair and regeneration.

摘要

包括骨缺损在内的肌肉骨骼损伤,由于愈合欠佳,在骨科手术中仍然是一个重大挑战。骨重建策略侧重于在骨折修复中使用生物移植物和以生物材料为基础的3D结构形式的骨移植替代物。生物材料科学与工程的最新进展已促成了复杂的仿骨3D结构的创建,这些结构机械稳定、可生物降解且具有生物活性,以支持骨再生。目前的工作重点是改善生物材料和植入物的物理化学性质,以促进与宿主组织的相互作用和成骨作用。“智能”生物材料及其3D结构旨在与干细胞/祖细胞和细胞外基质(ECM)积极相互作用,以影响局部环境,促进成骨和组织形成。本文将总结此类智能生物材料以及应用内部或外部刺激来控制组织愈合微环境的方法。还特别强调了使用智能生物材料和策略来创建用于骨缺损修复和再生的功能性生物活性植入物。

相似文献

1
Smart Orthopedic Biomaterials and Implants.
Curr Opin Biomed Eng. 2023 Mar;25. doi: 10.1016/j.cobme.2022.100439. Epub 2022 Dec 21.
2
Prospective applications of bioactive materials in orthopedic therapies: A review.
Heliyon. 2024 Aug 10;10(16):e36152. doi: 10.1016/j.heliyon.2024.e36152. eCollection 2024 Aug 30.
3
Osteogenic protein-1 for long bone nonunion: an evidence-based analysis.
Ont Health Technol Assess Ser. 2005;5(6):1-57. Epub 2005 Apr 1.
4
The role of smart polymeric biomaterials in bone regeneration: a review.
Front Bioeng Biotechnol. 2023 Aug 17;11:1240861. doi: 10.3389/fbioe.2023.1240861. eCollection 2023.
5
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration.
Bone Res. 2022 Feb 23;10(1):17. doi: 10.1038/s41413-021-00180-y.
7
Advanced smart biomaterials and constructs for hard tissue engineering and regeneration.
Bone Res. 2018 Oct 22;6:31. doi: 10.1038/s41413-018-0032-9. eCollection 2018.
8
Inflammation-mediated matrix remodeling of extracellular matrix-mimicking biomaterials in tissue engineering and regenerative medicine.
Acta Biomater. 2022 Oct 1;151:106-117. doi: 10.1016/j.actbio.2022.08.015. Epub 2022 Aug 13.
9
An osteogenesis/angiogenesis-stimulation artificial ligament for anterior cruciate ligament reconstruction.
Acta Biomater. 2017 May;54:399-410. doi: 10.1016/j.actbio.2017.03.014. Epub 2017 Mar 14.
10
Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation.
Bioelectricity. 2021 Dec 1;3(4):255-271. doi: 10.1089/bioe.2021.0019. Epub 2021 Dec 16.

引用本文的文献

1
Stem Cell Therapy Approaches for Ischemia: Assessing Current Innovations and Future Directions.
Int J Mol Sci. 2025 Jun 30;26(13):6320. doi: 10.3390/ijms26136320.
2
Trauma and Orthopedic Surgery: Recent Developments and Future Challenges.
J Clin Med. 2025 Jul 1;14(13):4654. doi: 10.3390/jcm14134654.
3
Engineering the Immune Response to Biomaterials.
Adv Sci (Weinh). 2025 May;12(19):e2414724. doi: 10.1002/advs.202414724. Epub 2025 Apr 15.
6
Prospective applications of bioactive materials in orthopedic therapies: A review.
Heliyon. 2024 Aug 10;10(16):e36152. doi: 10.1016/j.heliyon.2024.e36152. eCollection 2024 Aug 30.
7
Atmospheric Plasma Treatment to Improve PHB Coatings on 316L Stainless Steel.
Polymers (Basel). 2024 Jul 20;16(14):2073. doi: 10.3390/polym16142073.
8
Antitumoral-Embedded Biopolymeric Spheres for Implantable Devices.
Pharmaceutics. 2024 Jun 3;16(6):754. doi: 10.3390/pharmaceutics16060754.
9
Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review.
Front Bioeng Biotechnol. 2024 Mar 18;12:1342340. doi: 10.3389/fbioe.2024.1342340. eCollection 2024.
10
Review of Spider Silk Applications in Biomedical and Tissue Engineering.
Biomimetics (Basel). 2024 Mar 11;9(3):169. doi: 10.3390/biomimetics9030169.

本文引用的文献

1
(Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective.
Adv Nanobiomed Res. 2022 Apr;2(4). doi: 10.1002/anbr.202100073. Epub 2022 Jan 5.
3
Comparative review of piezoelectric biomaterials approach for bone tissue engineering.
J Biomater Sci Polym Ed. 2022 Aug;33(12):1555-1594. doi: 10.1080/09205063.2022.2065409. Epub 2022 May 23.
4
A Novel Glucose-Sensitive Scaffold Accelerates Osteogenesis in Diabetic Conditions.
Biomed Res Int. 2022 Mar 18;2022:4133562. doi: 10.1155/2022/4133562. eCollection 2022.
5
Bisphosphonate-based hydrogel mediates biomimetic negative feedback regulation of osteoclastic activity to promote bone regeneration.
Bioact Mater. 2021 Nov 12;13:9-22. doi: 10.1016/j.bioactmat.2021.11.004. eCollection 2022 Jul.
6
Recent advances in smart stimuli-responsive biomaterials for bone therapeutics and regeneration.
Bone Res. 2022 Feb 23;10(1):17. doi: 10.1038/s41413-021-00180-y.
7
Bio-inspired zonal-structured matrices for bone-cartilage interface engineering.
Biofabrication. 2022 Feb 25;14(2). doi: 10.1088/1758-5090/ac5413.
8
Reactive Oxygen Species (ROS)-Responsive Biomaterials for the Treatment of Bone-Related Diseases.
Front Bioeng Biotechnol. 2022 Jan 11;9:820468. doi: 10.3389/fbioe.2021.820468. eCollection 2021.
9
A bone implant with NIR-responsiveness for eliminating osteosarcoma cells and promoting osteogenic differentiation of BMSCs.
Colloids Surf B Biointerfaces. 2022 Mar;211:112296. doi: 10.1016/j.colsurfb.2021.112296. Epub 2021 Dec 18.
10
Enhancement of Bone Regeneration Through the Converse Piezoelectric Effect, A Novel Approach for Applying Mechanical Stimulation.
Bioelectricity. 2021 Dec 1;3(4):255-271. doi: 10.1089/bioe.2021.0019. Epub 2021 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验