Jones Alicia M, Jones Daniel R
Eureka Clinical Computing, Eureka Springs, AR, United States.
Front Artif Intell. 2022 Jul 22;5:727486. doi: 10.3389/frai.2022.727486. eCollection 2022.
Online AI symptom checkers and diagnostic assistants (DAs) have tremendous potential to reduce misdiagnosis and cost, while increasing the quality, convenience, and availability of healthcare, but only if they can perform with high accuracy. We introduce a novel Bayesian DA designed to improve diagnostic accuracy by addressing key weaknesses of Bayesian Network implementations for clinical diagnosis. We compare the performance of our prototype DA (MidasMed) to that of physicians and six other publicly accessible DAs (Ada, Babylon, Buoy, Isabel, Symptomate, and WebMD) using a set of 30 publicly available case vignettes, and using only sparse history (no exam findings or tests). Our results demonstrate superior performance of the MidasMed DA, with the correct diagnosis being the top ranked disorder in 93% of cases, and in the top 3 in 96% of cases.
在线人工智能症状检查器和诊断助手(DAs)在减少误诊和成本方面具有巨大潜力,同时还能提高医疗保健的质量、便利性和可及性,但前提是它们能够高精度运行。我们引入了一种新颖的贝叶斯诊断助手,旨在通过解决贝叶斯网络在临床诊断应用中的关键弱点来提高诊断准确性。我们使用一组30个公开可用的病例 vignettes,并仅采用稀疏病史(无检查结果或测试),将我们的原型诊断助手(MidasMed)与医生以及其他六个公开可用的诊断助手(Ada、Babylon、Buoy、Isabel、Symptomate和WebMD)的性能进行比较。我们的结果表明,MidasMed诊断助手表现卓越,在93%的病例中,正确诊断是排名最高的疾病,在96%的病例中,正确诊断排在前三位。