Department of Micro Engineering, Kyoto University, Kyoto Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8540, Japan.
Advanced ICT Research Institute, National Institute of Information and Communications Technology, 588-2, Iwaoka, Nishi-ku, Kobe, Hyogo 651-2492, Japan.
Sci Adv. 2020 Jan 22;6(4):eaax7413. doi: 10.1126/sciadv.aax7413. eCollection 2020 Jan.
Kinesin is a motor protein that plays important roles in a variety of cellular functions. In vivo, multiple kinesin molecules are bound to cargo and work as a team to produce larger forces or higher speeds than a single kinesin. However, the coordination of kinesins remains poorly understood because of the experimental difficulty in controlling the number and arrangement of kinesins, which are considered to affect their coordination. Here, we report that both the number and spacing significantly influence the velocity of microtubules driven by nonprocessive kinesin-14 (Ncd), whereas neither the number nor the spacing changes the velocity in the case of highly processive kinesin-1. This result was realized by the optimum nanopatterning method of kinesins that enables immobilization of a single kinesin on a nanopillar. Our proposed method enables us to study the individual effects of the number and spacing of motors on the collective dynamics of multiple motors.
驱动蛋白是一种在多种细胞功能中发挥重要作用的马达蛋白。在体内,多个驱动蛋白分子与货物结合,并作为一个团队协同工作,产生比单个驱动蛋白更大的力或更高的速度。然而,由于难以控制驱动蛋白的数量和排列,它们的协调仍然知之甚少,因为这被认为会影响它们的协调。在这里,我们报告说,数量和间隔都显著影响非运动性驱动蛋白-14(Ncd)驱动的微管的速度,而在高度运动性驱动蛋白-1 的情况下,数量和间隔都不会改变速度。这一结果是通过驱动蛋白的最佳纳米图案化方法实现的,该方法能够将单个驱动蛋白固定在纳米柱上。我们提出的方法使我们能够研究数量和间隔对多个马达协同动力学的个体影响。