IEEE J Biomed Health Inform. 2022 Nov;26(11):5619-5630. doi: 10.1109/JBHI.2022.3198509. Epub 2022 Nov 10.
Lung cancer has the highest mortality rate among all malignancies. Non-micro pulmonary nodules are the primary manifestation of early-stage lung cancer. If patients can be detected with nodules in the early stage and receive timely treatment, their survival rate can be improved. Due to the large number of patients and limited medical resources, doctors take a longer time to make a diagnosis, which reduces efficiency and accuracy. Besides, there are no suitable approaches for developing countries. Therefore, we propose a 2.5D-based cascaded multi-stage framework for automatic detection and segmentation (DS-CMSF) of pulmonary nodules. The first three stages of the framework are used to discover lesions, and the latter stage is used to segment them. The first locating stage introduces the classical 2D-based Yolov5 model to locate the nodules roughly on axial slices. The second aggregation stage proposes a candidate nodule selection (CNS) algorithm to locate further and reduce redundant candidate nodules. The third classification stage uses a multi-size 3D-based fusion model to accommodate nodules of varying sizes and shapes for false-positive reducing. The last segmentation stage introduces multi-scale and attention modules into 3D-based UNet autoencoder to segment the nodular regions finely. Our proposed framework achieves 95.95% sensitivity and 89.50% CPM for nodules detection on the LUNA16 dataset, and 86.75% DSC for nodules segmentation on the LIDC-IDRI dataset. Moreover, our approach also achieves the accuracy-complexity trade-off, which can effectively realize the auxiliary diagnosis of pulmonary nodules in developing countries.
肺癌是所有恶性肿瘤中死亡率最高的。非微肺结节是早期肺癌的主要表现。如果患者能够在早期发现结节并及时接受治疗,他们的生存率可以得到提高。由于患者数量众多,医疗资源有限,医生的诊断时间较长,这降低了效率和准确性。此外,发展中国家也没有合适的方法。因此,我们提出了一种基于 2.5D 的级联多阶段框架(DS-CMSF),用于肺结节的自动检测和分割。该框架的前三个阶段用于发现病变,后一个阶段用于分割它们。第一定位阶段引入了经典的基于 2D 的 Yolov5 模型,以便在轴向切片上粗略地定位结节。第二聚合阶段提出了候选结节选择(CNS)算法,以进一步定位并减少冗余候选结节。第三分类阶段使用多尺寸 3D 融合模型来容纳不同大小和形状的结节,以减少假阳性。最后分割阶段将多尺度和注意力模块引入基于 3D 的 UNet 自动编码器中,以精细分割结节区域。我们提出的框架在 LUNA16 数据集上的结节检测中实现了 95.95%的灵敏度和 89.50%的 CPM,在 LIDC-IDRI 数据集上的结节分割中实现了 86.75%的 DSC。此外,我们的方法还实现了准确性-复杂性的权衡,这可以有效地实现发展中国家肺结节的辅助诊断。