Suppr超能文献

基于机器学习方法的单细胞 RNA-Seq 数据的人类细胞周期相标记物的鉴定。

Identification of Human Cell Cycle Phase Markers Based on Single-Cell RNA-Seq Data by Using Machine Learning Methods.

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.

出版信息

Biomed Res Int. 2022 Aug 13;2022:2516653. doi: 10.1155/2022/2516653. eCollection 2022.

Abstract

The cell cycle is composed of a series of ordered, highly regulated processes through which a cell grows and duplicates its genome and eventually divides into two daughter cells. According to the complex changes in cell structure and biosynthesis, the cell cycle is divided into four phases: gap 1 (G1), DNA synthesis (S), gap 2 (G2), and mitosis (M). Determining which cell cycle phases a cell is in is critical to the research of cancer development and pharmacy for targeting cell cycle. However, current detection methods have the following problems: (1) they are complicated and time consuming to perform, and (2) they cannot detect the cell cycle on a large scale. Rapid developments in single-cell technology have made dissecting cells on a large scale possible with unprecedented resolution. In the present research, we construct efficient classifiers and identify essential gene biomarkers based on single-cell RNA sequencing data through Boruta and three feature ranking algorithms (e.g., mRMR, MCFS, and SHAP by LightGBM) by utilizing four advanced classification algorithms. Meanwhile, we mine a series of classification rules that can distinguish different cell cycle phases. Collectively, we have provided a novel method for determining the cell cycle and identified new potential cell cycle-related genes, thereby contributing to the understanding of the processes that regulate the cell cycle.

摘要

细胞周期由一系列有序的、高度调控的过程组成,细胞通过这些过程生长并复制其基因组,最终分裂为两个子细胞。根据细胞结构和生物合成的复杂变化,细胞周期分为四个阶段:G1 期(间隙 1)、S 期(DNA 合成)、G2 期(间隙 2)和有丝分裂(M)期。确定细胞处于哪个细胞周期阶段对于癌症发展和针对细胞周期的药物研究至关重要。然而,目前的检测方法存在以下问题:(1)操作复杂且耗时;(2)无法大规模检测细胞周期。单细胞技术的快速发展使得利用 Boruta 和三种特征排序算法(例如,mRMR、MCFS 和 LightGBM 的 SHAP),通过四种先进的分类算法,在大规模上解析细胞成为可能。同时,我们挖掘了一系列可以区分不同细胞周期阶段的分类规则。总的来说,我们提供了一种确定细胞周期的新方法,并鉴定了新的潜在细胞周期相关基因,从而有助于理解调节细胞周期的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d18/9393965/67b975b3b272/BMRI2022-2516653.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验