Suppr超能文献

与糖尿病视网膜病变进展相关的视网膜转录组和细胞景观。

Retinal Transcriptome and Cellular Landscape in Relation to the Progression of Diabetic Retinopathy.

机构信息

Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia.

Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Victoria, Australia.

出版信息

Invest Ophthalmol Vis Sci. 2022 Aug 2;63(9):26. doi: 10.1167/iovs.63.9.26.

Abstract

PURPOSE

Previous studies that identify putative genes associated with diabetic retinopathy are only focusing on specific clinical stages, thus resulting genes are not necessarily reflective of disease progression. This study identified genes associated with the severity level of diabetic retinopathy using the likelihood-ratio test (LRT) and ordinal logistic regression (OLR) model, as well as to profile immune and retinal cell landscape in progressive diabetic retinopathy using a machine learning deconvolution approach.

METHODS

This study used a published transcriptomic dataset (GSE160306) from macular regions of donors with different degrees of diabetic retinopathy (10 healthy controls, 10 cases of diabetes, 9 cases of nonproliferative diabetic retinopathy, and 10 cases of proliferative diabetic retinopathy or combined with diabetic macular edema). LRT and OLR models were applied to identify severity-associated genes. In addition, CIBERSORTx was used to estimate proportional changes of immune and retinal cells in progressive diabetic retinopathy.

RESULTS

By controlling for gender and age using LRT and OLR, 50 genes were identified to be significantly increased in expression with the severity of diabetic retinopathy. Functional enrichment analyses suggested these severity-associated genes are related to inflammation and immune responses. CCND1 and FCGR2B are further identified as key regulators to interact with many other severity-associated genes and are crucial to inflammation. Deconvolution analyses demonstrated that the proportions of memory B cells, M2 macrophages, and Müller glia were significantly increased with the progression of diabetic retinopathy.

CONCLUSIONS

These findings demonstrate that deep analyses of transcriptomic data can advance our understanding of progressive ocular diseases, such as diabetic retinopathy, by applying LRT and OLR models as well as bulk gene expression deconvolution.

摘要

目的

先前研究识别与糖尿病视网膜病变相关的假定基因仅关注特定的临床阶段,因此鉴定出的基因不一定能反映疾病的进展。本研究使用似然比检验(LRT)和有序逻辑回归(OLR)模型,以及机器学习去卷积方法,鉴定与糖尿病视网膜病变严重程度相关的基因,分析进行性糖尿病视网膜病变中的免疫和视网膜细胞特征。

方法

本研究使用来自不同程度糖尿病视网膜病变供体黄斑区的已发表转录组数据集(GSE160306)(10 名健康对照、10 名糖尿病患者、9 名非增生性糖尿病视网膜病变患者和 10 名增生性糖尿病视网膜病变或合并糖尿病性黄斑水肿患者)。应用 LRT 和 OLR 模型鉴定与严重程度相关的基因。此外,CIBERSORTx 用于估计进行性糖尿病视网膜病变中免疫和视网膜细胞的比例变化。

结果

通过 LRT 和 OLR 控制性别和年龄,鉴定出 50 个表达水平随糖尿病视网膜病变严重程度显著增加的基因。功能富集分析表明,这些与严重程度相关的基因与炎症和免疫反应有关。CCND1 和 FCGR2B 进一步被鉴定为与许多其他严重程度相关基因相互作用的关键调节因子,对炎症至关重要。去卷积分析表明,记忆 B 细胞、M2 巨噬细胞和 Müller 胶质细胞的比例随着糖尿病视网膜病变的进展而显著增加。

结论

这些发现表明,通过应用 LRT 和 OLR 模型以及批量基因表达去卷积,深入分析转录组数据可以提高我们对进行性眼部疾病(如糖尿病视网膜病变)的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2483/9424969/1eff487ef654/iovs-63-9-26-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验