Department of Emergency and Organ Transplantations-Rheumatology Unit, University of Bari "Aldo Moro", Bari, Italy.
King's College London, London, UK.
Intern Emerg Med. 2021 Sep;16(6):1457-1465. doi: 10.1007/s11739-020-02583-x. Epub 2021 Jan 2.
Ultrasound-guided synovial tissue biopsy (USSB) may allow personalizing the treatment for patients with inflammatory arthritis. To this end, the quantification of tissue inflammation in synovial specimens can be crucial to adopt proper therapeutic strategies. This study aimed at investigating whether computer vision may be of aid in discriminating the grade of synovitis in patients undergoing USSB. We used a database of 150 photomicrographs of synovium from patients who underwent USSB. For each hematoxylin and eosin (H&E)-stained slide, Krenn's score was calculated. After proper data pre-processing and fine-tuning, transfer learning on a ResNet34 convolutional neural network (CNN) was employed to discriminate between low and high-grade synovitis (Krenn's score < 5 or ≥ 5). We computed test phase metrics, accuracy, precision (true positive/actual results), and recall (true positive/predicted results). The Grad-Cam algorithm was used to highlight the regions in the image used by the model for prediction. We analyzed photomicrographs of specimens from 12 patients with arthritis. The training dataset included n.90 images (n.42 with high-grade synovitis). Validation and test datasets included n.30 (n.14 high-grade synovitis) and n.30 items (n.16 with high-grade synovitis). An accuracy of 100% (precision = 1, recall = 1) was scored in the test phase. Cellularity in the synovial lining and sublining layers was the salient determinant of CNN prediction. This study provides a proof of concept that computer vision with transfer learning is suitable for scoring synovitis. Integrating CNN-based approach into real-life patient management may improve the workflow between rheumatologists and pathologists.
超声引导下滑膜组织活检(USSB)可能使炎症性关节炎患者的治疗个体化。为此,滑膜标本中组织炎症的定量分析对于采用适当的治疗策略至关重要。本研究旨在探讨计算机视觉是否有助于区分接受 USSB 治疗的患者的滑膜炎程度。我们使用了 150 名接受 USSB 治疗的患者的滑膜组织病理照片数据库。对于每个苏木精和伊红(H&E)染色的幻灯片,计算了 Krenn 评分。在进行适当的数据预处理和微调后,在 ResNet34 卷积神经网络(CNN)上进行迁移学习,以区分低级别和高级别滑膜炎(Krenn 评分<5 或≥5)。我们计算了测试阶段的指标、准确性、精度(真阳性/实际结果)和召回率(真阳性/预测结果)。使用 Grad-Cam 算法突出模型用于预测的图像中的区域。我们分析了 12 名关节炎患者的标本病理照片。训练数据集包括 n.90 张图像(n.42 张为高级别滑膜炎)。验证和测试数据集分别包括 n.30 张(n.14 张为高级别滑膜炎)和 n.30 项(n.16 张为高级别滑膜炎)。在测试阶段,准确率达到 100%(精度=1,召回率=1)。滑膜衬里和下层细胞密度是 CNN 预测的显著决定因素。本研究提供了一个概念验证,即使用迁移学习的计算机视觉适用于滑膜炎评分。将基于 CNN 的方法集成到现实患者管理中可能会改善风湿病学家和病理学家之间的工作流程。