Rabinovici-Cohen Simona, Fernández Xosé M, Grandal Rejo Beatriz, Hexter Efrat, Hijano Cubelos Oliver, Pajula Juha, Pölönen Harri, Reyal Fabien, Rosen-Zvi Michal
IBM Research-Israel, Mount Carmel, Haifa 3498825, Israel.
Institut Curie, 26 Rue d'Ulm, 75005 Paris, France.
Cancers (Basel). 2022 Aug 9;14(16):3848. doi: 10.3390/cancers14163848.
In current clinical practice, it is difficult to predict whether a patient receiving neoadjuvant chemotherapy (NAC) for breast cancer is likely to encounter recurrence after treatment and have the cancer recur locally in the breast or in other areas of the body. We explore the use of clinical history, immunohistochemical markers, and multiparametric magnetic resonance imaging (DCE, ADC, Dixon) to predict the risk of post-treatment recurrence within five years. We performed a retrospective study on a cohort of 1738 patients from Institut Curie and analyzed the data using classical machine learning, image processing, and deep learning. Our results demonstrate the ability to predict recurrence prior to NAC treatment initiation using each modality alone, and the possible improvement achieved by combining the modalities. When evaluated on holdout data, the multimodal model achieved an AUC of 0.75 (CI: 0.70, 0.80) and 0.57 specificity at 0.90 sensitivity. We then stratified the data based on known prognostic biomarkers. We found that our models can provide accurate recurrence predictions (AUC > 0.89) for specific groups of women under 50 years old with poor prognoses. A version of our method won second place at the BMMR2 Challenge, with a very small margin from being first, and was a standout from the other challenge entries.
在当前的临床实践中,很难预测接受乳腺癌新辅助化疗(NAC)的患者在治疗后是否可能复发,以及癌症是在乳房局部还是身体其他部位复发。我们探索使用临床病史、免疫组化标志物和多参数磁共振成像(DCE、ADC、狄克逊)来预测五年内治疗后复发的风险。我们对来自居里研究所的1738名患者进行了一项回顾性研究,并使用经典机器学习、图像处理和深度学习对数据进行了分析。我们的结果表明,仅使用每种模式就能在NAC治疗开始前预测复发,并且通过组合这些模式可能会有所改善。在保留数据上进行评估时,多模态模型的AUC为0.75(CI:0.70,0.80),在灵敏度为0.90时特异性为0.57。然后,我们根据已知的预后生物标志物对数据进行分层。我们发现,我们的模型可以为特定的50岁以下预后不良的女性群体提供准确的复发预测(AUC>0.89)。我们方法的一个版本在BMMR2挑战赛中获得了第二名,与第一名的差距非常小,并且在其他参赛作品中脱颖而出。