Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
UNESCO Chair in Bioethics & Human Rights, 00163 Rome, Italy.
Medicina (Kaunas). 2022 Aug 3;58(8):1039. doi: 10.3390/medicina58081039.
Background and objectives: Little is known about outcome improvements and disparities in cardiac arrest and active cancer. We performed the first known AI and propensity score (PS)-augmented clinical, cost-effectiveness, and computational ethical analysis of cardio-oncology cardiac arrests including left heart catheterization (LHC)-related mortality reduction and related disparities. Materials and methods: A nationally representative cohort analysis was performed for mortality and cost by active cancer using the largest United States all-payer inpatient dataset, the National Inpatient Sample, from 2016 to 2018, using deep learning and machine learning augmented propensity score-adjusted (ML-PS) multivariable regression which informed cost-effectiveness and ethical analyses. The Cardiac Arrest Cardio-Oncology Score (CACOS) was then created for the above population and validated. The results informed the computational ethical analysis to determine ethical and related policy recommendations. Results: Of the 101,521,656 hospitalizations, 6,656,883 (6.56%) suffered cardiac arrest of whom 61,300 (0.92%) had active cancer. Patients with versus without active cancer were significantly less likely to receive an inpatient LHC (7.42% versus 20.79%, p < 0.001). In ML-PS regression in active cancer, post-arrest LHC significantly reduced mortality (OR 0.18, 95%CI 0.14−0.24, p < 0.001) which PS matching confirmed by up to 42.87% (95%CI 35.56−50.18, p < 0.001). The CACOS model included the predictors of no inpatient LHC, PEA initial rhythm, metastatic malignancy, and high-risk malignancy (leukemia, pancreas, liver, biliary, and lung). Cost-benefit analysis indicated 292 racial minorities and $2.16 billion could be saved annually by reducing racial disparities in LHC. Ethical analysis indicated the convergent consensus across diverse belief systems that such disparities should be eliminated to optimize just and equitable outcomes. Conclusions: This AI-guided empirical and ethical analysis provides a novel demonstration of LHC mortality reductions in cardio-oncology cardiac arrest and related disparities, along with an innovative predictive model that can be integrated within the digital ecosystem of modern healthcare systems to improve equitable clinical and public health outcomes.
对于患有心脏骤停和活动性癌症患者的预后改善和差异,我们知之甚少。我们首次使用人工智能和倾向评分(PS)增强的临床、成本效益和计算伦理分析方法,对包括左心导管术(LHC)相关死亡率降低和相关差异在内的心肿瘤性心脏骤停进行了分析。
利用美国最大的全支付住院患者数据集国家住院患者样本,对 2016 年至 2018 年期间因活动性癌症导致的死亡率和成本进行了全国代表性队列分析,使用深度学习和机器学习增强的倾向评分调整(ML-PS)多变量回归来进行成本效益和伦理分析。然后,为上述人群创建了心脏骤停心脏肿瘤学评分(CACOS)并进行了验证。分析结果为计算伦理分析提供了信息,以确定伦理和相关政策建议。
在 101521656 例住院患者中,有 6656883 例(6.56%)发生心脏骤停,其中 61300 例(0.92%)患有活动性癌症。与无活动性癌症的患者相比,接受住院 LHC 的可能性显著降低(7.42%对 20.79%,p <0.001)。在 ML-PS 回归中,心脏骤停后 LHC 显著降低死亡率(OR 0.18,95%CI 0.14-0.24,p <0.001),PS 匹配证实了这一点,最高可达 42.87%(95%CI 35.56-50.18,p <0.001)。CACOS 模型包括无住院 LHC、PEA 初始节律、转移性恶性肿瘤和高危恶性肿瘤(白血病、胰腺、肝脏、胆道和肺部)的预测因子。成本效益分析表明,通过减少 LHC 方面的种族差异,每年可节省 292 名少数族裔和 21.6 亿美元。伦理分析表明,不同信仰体系之间存在趋同共识,即应消除这种差异,以优化公正和平等的结果。
这项人工智能指导的实证和伦理分析首次提供了心脏肿瘤性心脏骤停中 LHC 降低死亡率和相关差异的证据,并提出了一种创新的预测模型,该模型可整合到现代医疗保健系统的数字生态系统中,以改善公平的临床和公共卫生结果。