文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种用于使用基于石墨烯的纳米传感器进行冠状病毒检测的光学建模框架。

An Optical Modeling Framework for Coronavirus Detection Using Graphene-Based Nanosensor.

作者信息

Maghoul Amir, Simonsen Ingve, Rostami Ali, Mirtaheri Peyman

机构信息

Optical/FNIR Laboratory of Biomedical Group, Department of Mechanical, Electronics and Chemical Engineering, OsloMet-Oslo Metropolitan University, 0167 Oslo, Norway.

Department of Physics, NTNU-Norwegian University of Science and Technology, 7491 Trondheim, Norway.

出版信息

Nanomaterials (Basel). 2022 Aug 20;12(16):2868. doi: 10.3390/nano12162868.


DOI:10.3390/nano12162868
PMID:36014733
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9412525/
Abstract

The outbreak of the COVID-19 virus has faced the world with a new and dangerous challenge due to its contagious nature. Hence, developing sensory technologies to detect the coronavirus rapidly can provide a favorable condition for pandemic control of dangerous diseases. In between, because of the nanoscale size of this virus, there is a need for a good understanding of its optical behavior, which can give an extraordinary insight into the more efficient design of sensory devices. For the first time, this paper presents an optical modeling framework for a COVID-19 particle in the blood and extracts its optical characteristics based on numerical computations. To this end, a theoretical foundation of a COVID-19 particle is proposed based on the most recent experimental results available in the literature to simulate the optical behavior of the coronavirus under varying physical conditions. In order to obtain the optical properties of the COVID-19 model, the light reflectance by the structure is then simulated for different geometrical sizes, including the diameter of the COVID-19 particle and the size of the spikes surrounding it. It is found that the reflectance spectra are very sensitive to geometric changes of the coronavirus. Furthermore, the density of COVID-19 particles is investigated when the light is incident on different sides of the sample. Following this, we propose a nanosensor based on graphene, silicon, and gold nanodisks and demonstrate the functionality of the designed devices for detecting COVID-19 particles inside the blood samples. Indeed, the presented nanosensor design can be promoted as a practical procedure for creating nanoelectronic kits and wearable devices with considerable potential for fast virus detection.

摘要

由于其传染性,新冠病毒的爆发给世界带来了新的危险挑战。因此,开发能够快速检测冠状病毒的传感技术可为控制危险疾病的大流行提供有利条件。在此期间,由于这种病毒的纳米级尺寸,需要深入了解其光学行为,这可以为更高效地设计传感设备提供非凡的见解。本文首次提出了一种针对血液中新冠病毒颗粒的光学建模框架,并基于数值计算提取其光学特性。为此,基于文献中最新的实验结果,提出了新冠病毒颗粒的理论基础,以模拟冠状病毒在不同物理条件下的光学行为。为了获得新冠病毒模型的光学特性,随后针对不同的几何尺寸,包括新冠病毒颗粒的直径及其周围刺突的尺寸,模拟了该结构的光反射率。结果发现,反射光谱对冠状病毒的几何变化非常敏感。此外,还研究了光入射到样品不同侧面时新冠病毒颗粒的密度。在此基础上,我们提出了一种基于石墨烯、硅和金纳米盘的纳米传感器,并展示了所设计设备用于检测血液样本中新冠病毒颗粒的功能。事实上,所提出的纳米传感器设计可以作为一种实用方法来推广,用于制造具有快速检测病毒巨大潜力的纳米电子套件和可穿戴设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/484613d07397/nanomaterials-12-02868-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/8b68c5076bd3/nanomaterials-12-02868-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/6f389b70e388/nanomaterials-12-02868-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/36eb84c16821/nanomaterials-12-02868-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/925d938c5c68/nanomaterials-12-02868-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/2988a96c265f/nanomaterials-12-02868-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/0acc17bd7897/nanomaterials-12-02868-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/e4e6454d959e/nanomaterials-12-02868-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/b4bdcacdcdb1/nanomaterials-12-02868-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/7e7b544065cf/nanomaterials-12-02868-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/9823baf2b28a/nanomaterials-12-02868-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/102c5202ce17/nanomaterials-12-02868-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/d998f19f4ecd/nanomaterials-12-02868-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/58ddcc7050ea/nanomaterials-12-02868-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/484613d07397/nanomaterials-12-02868-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/8b68c5076bd3/nanomaterials-12-02868-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/6f389b70e388/nanomaterials-12-02868-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/36eb84c16821/nanomaterials-12-02868-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/925d938c5c68/nanomaterials-12-02868-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/2988a96c265f/nanomaterials-12-02868-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/0acc17bd7897/nanomaterials-12-02868-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/e4e6454d959e/nanomaterials-12-02868-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/b4bdcacdcdb1/nanomaterials-12-02868-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/7e7b544065cf/nanomaterials-12-02868-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/9823baf2b28a/nanomaterials-12-02868-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/102c5202ce17/nanomaterials-12-02868-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/d998f19f4ecd/nanomaterials-12-02868-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/58ddcc7050ea/nanomaterials-12-02868-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e922/9412525/484613d07397/nanomaterials-12-02868-g014.jpg

相似文献

[1]
An Optical Modeling Framework for Coronavirus Detection Using Graphene-Based Nanosensor.

Nanomaterials (Basel). 2022-8-20

[2]
A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the remote early detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial.

Trials. 2021-6-22

[3]
A prospective, randomized, single-blinded, crossover trial to investigate the effect of a wearable device in addition to a daily symptom diary for the Remote Early Detection of SARS-CoV-2 infections (COVID-RED): a structured summary of a study protocol for a randomized controlled trial.

Trials. 2021-10-11

[4]
Ultra-precise label-free nanosensor based on integrated graphene with Au nanostars toward direct detection of IgG antibodies of SARS-CoV-2 in blood.

J Electroanal Chem (Lausanne). 2021-8-1

[5]
Magnetic-Nanosensor-Based Virus and Pathogen Detection Strategies before and during COVID-19.

ACS Appl Nano Mater. 2020-9-22

[6]
Design and Numerical Analysis of a Graphene-Coated SPR Biosensor for Rapid Detection of the Novel Coronavirus.

Sensors (Basel). 2021-5-17

[7]
Label-Free Saliva Test for Rapid Detection of Coronavirus Using Nanosensor-Enabled SERS.

Bioengineering (Basel). 2023-3-22

[8]
Reflectance of graphene-coated dielectric plates in the framework of Dirac model: joint action of energy gap and chemical potential.

J Phys Condens Matter. 2019-12-18

[9]
In Vivo Observations of Rapid Scattered Light Changes Associated with Neurophysiological Activity

2009

[10]
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).

Phys Biol. 2013-8

引用本文的文献

[1]
Advancements in nanobiosensor technologies for in-vitro diagnostics to point of care testing.

Heliyon. 2024-11-9

本文引用的文献

[1]
Graphene-based field-effect transistor biosensors for the rapid detection and analysis of viruses: A perspective in view of COVID-19.

Carbon Trends. 2021-1

[2]
A review on plasmonic and metamaterial based biosensing platforms for virus detection.

Sens Biosensing Res. 2021-8

[3]
Nanomaterials-Based Biosensors for COVID-19 Detection-A Review.

IEEE Sens J. 2020-11-9

[4]
fabrication of a direct -scheme photocatalyst by immobilizing CdS quantum dots in the channels of graphene-hybridized and supported mesoporous titanium nanocrystals for high photocatalytic performance under visible light.

RSC Adv. 2018-12-18

[5]
An eco-friendly imprinted polymer based on graphene quantum dots for fluorescent detection of -nitroaniline.

RSC Adv. 2019-12-13

[6]
Multi-mode surface plasmon resonance absorber based on dart-type single-layer graphene.

RSC Adv. 2022-3-9

[7]
Detection of Microorganisms Using Graphene-Based Nanobiosensors.

Food Technol Biotechnol. 2021-12

[8]
Diffusion modeling of COVID-19 under lockdown.

Phys Fluids (1994). 2021-4

[9]
Rapid SARS-CoV-2 Spike Protein Detection by Carbon Nanotube-Based Near-Infrared Nanosensors.

Nano Lett. 2021-3-10

[10]
Nanobiosensors for the Detection of Novel Coronavirus 2019-nCoV and Other Pandemic/Epidemic Respiratory Viruses: A Review.

Sensors (Basel). 2020-11-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索