Department of Emergency and Critical Care Medicine, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo, Chiba, 260-8677, Japan.
Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
Sci Rep. 2022 Aug 26;12(1):14593. doi: 10.1038/s41598-022-18650-6.
Rapid and precise prehospital recognition of acute coronary syndrome (ACS) is key to improving clinical outcomes. The aim of this study was to investigate a predictive power for predicting ACS using the machine learning-based prehospital algorithm. We conducted a multicenter observational prospective study that included 10 participating facilities in an urban area of Japan. The data from consecutive adult patients, identified by emergency medical service personnel with suspected ACS, were analyzed. In this study, we used nested cross-validation to evaluate the predictive performance of the model. The primary outcomes were binary classification models for ACS prediction based on the nine machine learning algorithms. The voting classifier model for ACS using 43 features had the highest area under the receiver operating curve (AUC) (0.861 [95% CI 0.775-0.832]) in the test score. After validating the accuracy of the model using the external cohort, we repeated the analysis with a limited number of selected features. The performance of the algorithms using 17 features remained high AUC (voting classifier, 0.864 [95% CI 0.830-0.898], support vector machine (radial basis function), 0.864 [95% CI 0.829-0.887]) in the test score. We found that the machine learning-based prehospital algorithms showed a high predictive power for predicting ACS.
快速准确地在院前识别急性冠状动脉综合征(ACS)是改善临床结局的关键。本研究旨在探讨使用基于机器学习的院前算法预测 ACS 的预测能力。我们进行了一项多中心观察性前瞻性研究,包括日本一个城市地区的 10 个参与机构。对由急救医疗服务人员识别的疑似 ACS 的连续成年患者的数据进行了分析。在这项研究中,我们使用嵌套交叉验证来评估模型的预测性能。主要结果是基于 9 种机器学习算法的 ACS 预测的二进制分类模型。使用 43 个特征的投票分类器模型对 ACS 的预测具有最高的接收者操作特征曲线(ROC)下面积(AUC)(0.861 [95%CI 0.775-0.832])在测试评分中。在用外部队列验证模型的准确性后,我们使用有限数量的精选特征重复了分析。在测试评分中,使用 17 个特征的算法的性能保持高 AUC(投票分类器,0.864 [95%CI 0.830-0.898],支持向量机(径向基函数),0.864 [95%CI 0.829-0.887])。我们发现基于机器学习的院前算法对预测 ACS 具有较高的预测能力。