School of Medicine, Tsinghua University, Beijing, China.
School of Life Sciences, Tsinghua University, Beijing, China.
Front Immunol. 2022 Aug 12;13:930510. doi: 10.3389/fimmu.2022.930510. eCollection 2022.
Both Gram-negative and Gram-positive bacteria can release vesicle-like structures referred to as bacterial extracellular vesicles (BEVs), which contain various bioactive compounds. BEVs play important roles in the microbial community interactions and host-microbe interactions. Markedly, BEVs can be delivered to host cells, thus modulating the development and function of the innate immune system. To clarify the compositions and biological functions of BEVs, we need to collect these vesicles with high purity and bioactivity. Here we propose an isolation strategy based on a broad-spectrum antimicrobial epsilon-poly-L-lysine (ϵ-PL) to precipitate BEVs at a relatively low centrifugal speed (10,000 × g). Compared to the standard ultracentrifugation strategy, our method can enrich BEVs from large volumes of media inexpensively and rapidly. The precipitated BEVs can be recovered by adjusting the pH and ionic strength of the media, followed by an ultrafiltration step to remove ϵ-PL and achieve buffer exchange. The morphology, size, and protein composition of the ϵ-PL-precipitated BEVs are comparable to those purified by ultracentrifugation. Moreover, ϵ-PL-precipitated BEVs retained the biological activity as observed by confocal microscopy studies. And THP-1 cells stimulated with these BEVs undergo marked reprogramming of their transcriptome. KEGG analysis of the differentially expressed genes showed that the signal pathways of cellular inflammatory response were significantly activated. Taken together, we provide a new method to rapidly enrich BEVs with high purity and bioactivity, which has the potential to be applied to BEVs-related immune response studies.
革兰氏阴性菌和革兰氏阳性菌都可以释放囊泡样结构,称为细菌细胞外囊泡 (BEVs),其中包含各种生物活性化合物。BEVs 在微生物群落相互作用和宿主-微生物相互作用中发挥着重要作用。值得注意的是,BEVs 可以递送到宿主细胞,从而调节先天免疫系统的发育和功能。为了阐明 BEVs 的组成和生物学功能,我们需要用高纯度和生物活性来收集这些囊泡。在这里,我们提出了一种基于广谱抗菌剂 ε-聚赖氨酸 (ϵ-PL) 的分离策略,该策略可以在相对较低的离心速度 (10,000×g) 下沉淀 BEVs。与标准超速离心策略相比,我们的方法可以从大量培养基中廉价、快速地富集 BEVs。通过调节培养基的 pH 值和离子强度,可以回收沉淀的 BEVs,然后通过超滤步骤去除 ϵ-PL 并实现缓冲液交换。沉淀的 BEVs 的形态、大小和蛋白质组成与超速离心纯化的 BEVs 相当。此外,通过共聚焦显微镜研究观察到,沉淀的 BEVs 保留了生物活性。用这些 BEVs 刺激 THP-1 细胞后,其转录组发生明显重编程。差异表达基因的 KEGG 分析显示,细胞炎症反应信号通路被显著激活。总之,我们提供了一种快速、高纯度和高生物活性富集 BEVs 的新方法,该方法有可能应用于 BEVs 相关免疫反应研究。