Suppr超能文献

性方面的问题:利用电子健康记录的机器学习中的性/性别混淆、性困惑和性痴迷。

Sex trouble: Sex/gender slippage, sex confusion, and sex obsession in machine learning using electronic health records.

作者信息

Albert Kendra, Delano Maggie

机构信息

Cyberlaw Clinic, Harvard Law School, Cambridge, MA 02138, USA.

Engineering Department, Swarthmore College, Swarthmore, PA 19146, USA.

出版信息

Patterns (N Y). 2022 Aug 12;3(8):100534. doi: 10.1016/j.patter.2022.100534.

Abstract

False assumptions that sex and gender are binary, static, and concordant are deeply embedded in the medical system. As machine learning researchers use medical data to build tools to solve novel problems, understanding how existing systems represent sex/gender incorrectly is necessary to avoid perpetuating harm. In this perspective, we identify and discuss three factors to consider when working with sex/gender in research: "sex/gender slippage," the frequent substitution of sex and sex-related terms for gender and vice versa; "sex confusion," the fact that any given sex variable holds many different potential meanings; and "sex obsession," the idea that the relevant variable for most inquiries related to sex/gender is sex assigned at birth. We then explore how these phenomena show up in medical machine learning research using electronic health records, with a specific focus on HIV risk prediction. Finally, we offer recommendations about how machine learning researchers can engage more carefully with questions of sex/gender.

摘要

认为性别是二元、固定且一致的错误假设在医疗系统中根深蒂固。随着机器学习研究人员利用医疗数据构建工具来解决新问题,了解现有系统如何错误地呈现性别对于避免持续造成伤害至关重要。从这个角度来看,我们识别并讨论在研究中处理性别时需要考虑的三个因素:“性别混淆”,即频繁用性别和与性别相关的术语替代性别,反之亦然;“性别混乱”,即任何给定的性别变量都有许多不同的潜在含义这一事实;以及“性别痴迷”,即认为与性别相关的大多数询问的相关变量是出生时指定的性别的观点。然后,我们探讨这些现象如何在使用电子健康记录的医疗机器学习研究中出现,特别关注艾滋病毒风险预测。最后,我们就机器学习研究人员如何更谨慎地处理性别问题提供建议。

相似文献

2
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

引用本文的文献

2
Harnessing digital health data for suicide prevention and care: A rapid review.利用数字健康数据预防自杀和提供护理:快速综述。
Digit Health. 2025 Feb 23;11:20552076241308615. doi: 10.1177/20552076241308615. eCollection 2025 Jan-Dec.

本文引用的文献

1
The medical algorithmic audit.医学算法审计
Lancet Digit Health. 2022 May;4(5):e384-e397. doi: 10.1016/S2589-7500(22)00003-6. Epub 2022 Apr 5.
10
Ethical Machine Learning in Healthcare.医疗保健中的伦理机器学习。
Annu Rev Biomed Data Sci. 2021 Jul;4:123-144. doi: 10.1146/annurev-biodatasci-092820-114757. Epub 2021 May 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验