Parsonnet Eric, Caretta Lucas, Nagarajan Vikram, Zhang Hongrui, Taghinejad Hossein, Behera Piush, Huang Xiaoxi, Kavle Pravin, Fernandez Abel, Nikonov Dmitri, Li Hai, Young Ian, Analytis James, Ramesh Ramamoorthy
Department of Physics, University of California, Berkeley, California 94720, USA.
Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA.
Phys Rev Lett. 2022 Aug 19;129(8):087601. doi: 10.1103/PhysRevLett.129.087601.
Spin transport through magnetic insulators has been demonstrated in a variety of materials and is an emerging pathway for next-generation spin-based computing. To modulate spin transport in these systems, one typically applies a sufficiently strong magnetic field to allow for deterministic control of magnetic order. Here, we make use of the well-known multiferroic magnetoelectric, BiFeO_{3}, to demonstrate nonvolatile, hysteretic, electric-field control of thermally excited magnon current in the absence of an applied magnetic field. These findings are an important step toward magnon-based devices, where electric-field-only control is highly desirable.
自旋通过磁性绝缘体的输运已在多种材料中得到证实,并且是下一代基于自旋的计算的一种新兴途径。为了调制这些系统中的自旋输运,通常会施加足够强的磁场以实现对磁序的确定性控制。在此,我们利用著名的多铁性磁电体BiFeO₃,来证明在没有外加磁场的情况下,对热激发磁振子电流的非易失性、滞后性电场控制。这些发现是迈向基于磁振子的器件的重要一步,在这类器件中仅通过电场进行控制是非常理想的。