Physical Intelligence Department, Max Planck Institute for Intelligent Systems, 70569, Stuttgart, Germany.
Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China.
Adv Sci (Weinh). 2022 Nov;9(31):e2203730. doi: 10.1002/advs.202203730. Epub 2022 Sep 5.
Miniature untethered robots attract growing interest as they have become more functional and applicable to disruptive biomedical applications recently. Particularly, the soft ones among them exhibit unique merits of compliance, versatility, and agility. With scarce onboard space, these devices mostly harvest energy from environment or physical fields, such as magnetic and acoustic fields and patterned lights. In most cases, one device only utilizes one energy transmission mode (ETM) in powering its activities to achieve programmed tasks, such as locomotion and object manipulation. But real-world tasks demand multifunctional devices that require more energy in various forms. This work reports a liquid metal-elastomer composite with dual-ETM using one magnetic field for miniature untethered multifunctional robots. The first ETM uses the low-frequency (<100 Hz) field component to induce shape-morphing, while the second ETM employs energy transmitted via radio-frequency (20 kHz-300 GHz) induction to power onboard electronics and generate excess heat, enabling new capabilities. These new functions do not disturb the shape-morphing actuated using the first ETM. The reported material enables the integration of electric and thermal functionalities into soft miniature robots, offering a wealth of inspirations for multifunctional miniature robots that leverage developments in electronics to exhibit usefulness beyond self-locomotion.
微型非 tethered 机器人最近因其功能更加多样化且适用于具有颠覆性的生物医学应用而引起了越来越多的关注。特别是其中的软机器人具有很好的顺应性、多功能性和灵活性。由于板载空间有限,这些设备大多从环境或物理场(如磁场、声场和图案光)中获取能量。在大多数情况下,一个设备只能利用一种能量传输模式(ETM)来为其活动提供动力,以实现诸如运动和物体操作等预定任务。但是,实际任务需要多功能设备,这些设备需要各种形式的更多能量。这项工作报道了一种具有双 ETM 的液态金属-弹性体复合材料,该复合材料利用一个磁场为微型非 tethered 多功能机器人提供动力。第一个 ETM 使用低频(<100 Hz)场分量来诱导形状变形,而第二个 ETM 则利用通过射频(20 kHz-300 GHz)感应传输的能量为板载电子设备供电并产生多余的热量,从而实现新的功能。这些新功能不会干扰使用第一个 ETM 进行的形状变形。所报道的材料能够将电和热功能集成到软微型机器人中,为多功能微型机器人提供了丰富的灵感,这些机器人利用电子技术的发展,展现了超越自我运动的有用性。