Division of Chemistry and Biological Chemistry, School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore.
ACS Nano. 2022 Sep 27;16(9):13279-13293. doi: 10.1021/acsnano.2c05731. Epub 2022 Sep 6.
Disease X is a hypothetical unknown disease that has the potential to cause an epidemic or pandemic outbreak in the future. Nanosensors are attractive portable devices that can swiftly screen disease biomarkers on site, reducing the reliance on laboratory-based analyses. However, conventional data analytics limit the progress of nanosensor research. In this Perspective, we highlight the integral role of machine learning (ML) algorithms in advancing nanosensing strategies toward Disease X detection. We first summarize recent progress in utilizing ML algorithms for the smart design and fabrication of custom nanosensor platforms as well as realizing rapid on-site prediction of infection statuses. Subsequently, we discuss promising prospects in further harnessing the potential of ML algorithms in other aspects of nanosensor development and biomarker detection.
疾病 X 是一种假设的未知疾病,它有可能在未来引发传染病或大流行。纳米传感器是一种很有吸引力的便携式设备,可以快速在现场筛选疾病生物标志物,减少对基于实验室的分析的依赖。然而,传统的数据分析限制了纳米传感器研究的进展。在这篇观点文章中,我们强调了机器学习(ML)算法在推动针对疾病 X 检测的纳米传感策略方面的整体作用。我们首先总结了利用 ML 算法进行智能设计和制造定制纳米传感器平台以及实现快速现场感染状态预测的最新进展。随后,我们讨论了进一步挖掘 ML 算法在纳米传感器开发和生物标志物检测的其他方面的潜力的广阔前景。