Suppr超能文献

使用机器学习对心理社会、大脑和身体因素进行慢性背痛亚组分类。

Chronic back pain sub-grouped via psychosocial, brain and physical factors using machine learning.

机构信息

Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Geelong, Burwood, VIC, 3125, Australia.

Data to Intelligence Research Centre, School of Information Technology, Deakin University, Geelong, VIC, Australia.

出版信息

Sci Rep. 2022 Sep 7;12(1):15194. doi: 10.1038/s41598-022-19542-5.

Abstract

Chronic back pain (CBP) is heterogenous and identifying sub-groups could improve clinical decision making. Machine learning can build upon prior sub-grouping approaches by using a data-driven approach to overcome clinician subjectivity, however, only binary classification of pain versus no-pain has been attempted to date. In our cross-sectional study, age- and sex-matched participants with CBP (n = 4156) and pain-free controls (n = 14,927) from the UkBioBank were included. We included variables of body mass index, depression, loneliness/social isolation, grip strength, brain grey matter volumes and functional connectivity. We used fuzzy c-means clustering to derive CBP sub-groups and Support Vector Machine (SVM), Naïve Bayes, k-Nearest Neighbour (kNN) and Random Forest classifiers to determine classification accuracy. We showed that two variables (loneliness/social isolation and depression) and five clusters were optimal for creating sub-groups of CBP individuals. Classification accuracy was greater than 95% for when CBP sub-groups were assessed only, while misclassification in CBP sub-groups increased to 35-53% across classifiers when pain-free controls were added. We showed that individuals with CBP could sub-grouped and accurately classified. Future research should optimise variables by including specific spinal, psychosocial and nervous system measures associated with CBP to create more robust sub-groups that are discernible from pain-free controls.

摘要

慢性背痛(CBP)具有异质性,确定亚组可以改善临床决策。机器学习可以通过使用数据驱动的方法来克服临床医生的主观性,从而建立在先前的分组方法的基础上,但是迄今为止,仅尝试对疼痛与无疼痛进行二进制分类。在我们的横断面研究中,纳入了来自英国生物银行的患有 CBP(n=4156)和无痛对照(n=14927)的年龄和性别匹配的参与者。我们纳入了体重指数、抑郁、孤独/社会隔离、握力、大脑灰质体积和功能连接等变量。我们使用模糊 c 均值聚类来推导 CBP 亚组,并使用支持向量机(SVM)、朴素贝叶斯、k 最近邻(kNN)和随机森林分类器来确定分类准确性。我们表明,两个变量(孤独/社会隔离和抑郁)和五个聚类是创建 CBP 个体亚组的最佳选择。仅评估 CBP 亚组时,分类准确性大于 95%,而当将无痛对照者纳入时,SVM、kNN 和随机森林分类器的分类错误率增加到 35-53%。我们表明,CBP 个体可以进行分组和准确分类。未来的研究应通过纳入与 CBP 相关的特定脊柱、心理社会和神经系统测量来优化变量,以创建更能从无痛对照组中辨别出来的更稳健的亚组。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/80b0/9452567/88c28aeb28dc/41598_2022_19542_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验