Suppr超能文献

标记辅助作图可用于埃及伊蚊正向遗传学分析,该蚊是一种具有广泛重组荒漠的虫媒病毒载体。

Marker-assisted mapping enables forward genetic analysis in Aedes aegypti, an arboviral vector with vast recombination deserts.

机构信息

Genetics Bioinformatics and Computational Biology Program, Virginia Tech, Blacksburg, VA 24061, USA.

Fralin Life Sciences Institute, Virginia Tech, Blacksburg, VA 24061, USA.

出版信息

Genetics. 2022 Nov 1;222(3). doi: 10.1093/genetics/iyac140.

Abstract

Aedes aegypti is a major vector of arboviruses that cause dengue, chikungunya, yellow fever, and Zika. Although recent success in reverse genetics has facilitated rapid progress in basic and applied research, integration of forward genetics with modern technologies remains challenging in this important species, as up to 47% of its chromosome is refractory to genetic mapping due to extremely low rate of recombination. Here, we report the development of a marker-assisted mapping strategy to readily screen for and genotype only the rare but informative recombinants, drastically increasing both the resolution and signal-to-noise ratio. Using marker-assisted mapping, we mapped a transgene that was inserted in a >100-Mb recombination desert and a sex-linked spontaneous red-eye (re) mutation just outside the region. We subsequently determined, by CRISPR/Cas9-mediated knockout, that cardinal is the causal gene of re, which is the first forward genetic identification of a causal gene in Ae. aegypti. The identification of the causal gene of the sex-linked re mutation provides the molecular foundation for using gene editing to develop versatile and stable genetic sexing methods. To facilitate genome-wide forward genetics in Ae. aegypti, we generated and compiled a number of lines with markers throughout the genome. Thus, by overcoming the challenges presented by the vast recombination deserts and the scarcity of markers, we have shown that effective forward genetic analysis is increasingly feasible in this important arboviral vector species.

摘要

埃及伊蚊是一种主要的虫媒病毒载体,可引起登革热、基孔肯雅热、黄热病和寨卡病毒。尽管最近在反向遗传学方面取得了成功,促进了基础和应用研究的快速进展,但正向遗传学与现代技术的整合在这个重要物种中仍然具有挑战性,因为高达 47%的染色体由于极低的重组率而无法进行遗传作图。在这里,我们报告了一种标记辅助作图策略的发展,该策略可以方便地筛选和基因型仅罕见但信息丰富的重组体,极大地提高了分辨率和信噪比。使用标记辅助作图,我们对插入在> 100 Mb 重组沙漠中的转基因和性连锁自发红眼(re)突变进行了作图,该突变刚好位于该区域之外。随后,我们通过 CRISPR/Cas9 介导的敲除确定,cardinal 是 re 的致病基因,这是 Ae. aegypti 中第一个正向遗传鉴定的致病基因。性连锁 re 突变的致病基因的确定为利用基因编辑开发多功能和稳定的遗传性别鉴定方法提供了分子基础。为了促进 Ae. aegypti 中的全基因组正向遗传学,我们生成并编译了许多具有基因组标记的系。因此,通过克服巨大的重组沙漠和标记稀缺带来的挑战,我们表明在这个重要的虫媒病毒载体物种中,有效的正向遗传分析越来越可行。

相似文献

9
Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus.
Int J Infect Dis. 2018 Feb;67:25-35. doi: 10.1016/j.ijid.2017.11.026. Epub 2017 Nov 28.
10
Evolution of knockdown resistance () mutations of and in Hainan Island and Leizhou Peninsula, China.
Front Cell Infect Microbiol. 2023 Sep 21;13:1265873. doi: 10.3389/fcimb.2023.1265873. eCollection 2023.

引用本文的文献

1
Signatures of soft selective sweeps predominate in the yellow fever mosquito .
bioRxiv. 2025 Jul 10:2025.07.06.663360. doi: 10.1101/2025.07.06.663360.
2
Differential elimination of marked sex chromosomes enables production of nontransgenic male mosquitoes in a single strain.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2412149122. doi: 10.1073/pnas.2412149122. Epub 2025 May 8.
3
Evaluation of ebony as a potential selectable marker for genetic sexing in Aedes aegypti.
Parasit Vectors. 2025 Feb 25;18(1):76. doi: 10.1186/s13071-025-06709-y.
4
CRISPR-Cas9 knockout of membrane-bound alkaline phosphatase or cadherin does not confer resistance to Cry toxins in Aedes aegypti.
PLoS Negl Trop Dis. 2024 Jun 13;18(6):e0012256. doi: 10.1371/journal.pntd.0012256. eCollection 2024 Jun.
6
On the Origin and Evolution of the Mosquito Male-determining Factor Nix.
Mol Biol Evol. 2024 Jan 3;41(1). doi: 10.1093/molbev/msad276.
7
Recovery of metagenomic data from the microbiome using a reproducible snakemake pipeline: MINUUR.
Wellcome Open Res. 2023 May 26;8:131. doi: 10.12688/wellcomeopenres.19155.2. eCollection 2023.
8
Expression of anti-chikungunya single-domain antibodies in transgenic reduces vector competence for chikungunya virus and Mayaro virus.
Front Microbiol. 2023 Jun 12;14:1189176. doi: 10.3389/fmicb.2023.1189176. eCollection 2023.
9
Selective targeting of biting females to control mosquito-borne infectious diseases.
Trends Parasitol. 2022 Sep;38(9):791-804. doi: 10.1016/j.pt.2022.05.012. Epub 2022 Jun 13.
10
Genome-wide Association Study Reveals New Loci Associated With Pyrethroid Resistance in .
Front Genet. 2022 Apr 11;13:867231. doi: 10.3389/fgene.2022.867231. eCollection 2022.

本文引用的文献

1
2
Non-canonical odor coding in the mosquito.
Cell. 2022 Aug 18;185(17):3104-3123.e28. doi: 10.1016/j.cell.2022.07.024.
3
Mosquito brains encode unique features of human odour to drive host seeking.
Nature. 2022 May;605(7911):706-712. doi: 10.1038/s41586-022-04675-4. Epub 2022 May 4.
4
Introgression of the Red-Eye Genetic Sexing Strains Into Different Genomic Backgrounds for Sterile Insect Technique Applications.
Front Bioeng Biotechnol. 2022 Feb 2;10:821428. doi: 10.3389/fbioe.2022.821428. eCollection 2022.
5
Development of a pan-neuronal genetic driver in mosquitoes.
Cell Rep Methods. 2021 Jul 26;1(3). doi: 10.1016/j.crmeth.2021.100042. Epub 2021 Jun 30.
6
Elimination of vision-guided target attraction in Aedes aegypti using CRISPR.
Curr Biol. 2021 Sep 27;31(18):4180-4187.e6. doi: 10.1016/j.cub.2021.07.003. Epub 2021 Jul 30.
7
Evaluation of Gene Knockouts by CRISPR as Potential Targets for the Genetic Engineering of the Mosquito .
CRISPR J. 2021 Aug;4(4):595-608. doi: 10.1089/crispr.2021.0028. Epub 2021 Jul 19.
9
White pupae phenotype of tephritids is caused by parallel mutations of a MFS transporter.
Nat Commun. 2021 Jan 21;12(1):491. doi: 10.1038/s41467-020-20680-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验