Suppr超能文献

基于 UNet++ 和 SegCaps 的胸部 CT 肺部炎症区域自动量化:COVID-19 病例的对比分析。

Automated Quantification of Inflamed Lung Regions in Chest CT by UNet++ and SegCaps: A Comparative Analysis in COVID-19 Cases.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:3785-3788. doi: 10.1109/EMBC48229.2022.9870901.

Abstract

During the current COVID-19 pandemic, a high volume of lung imaging has been generated in the aid of the treating clinician. Importantly, lung inflammation severity, associated with the disease outcome, needs to be precisely quantified. Producing consistent and accurate reporting in high-demand scenarios can be a challenge that can compromise patient care with significant inter- or intra-observer variability in quantifying lung inflammation in a chest CT scan. In this backdrop, automated segmentation has recently been attempted using UNet++, a convolutional neural network (CNN), and results comparable to manual methods have been reported. In this paper, we hypothesize that the desired task can be performed with comparable efficiency using capsule networks with fewer parameters that make use of an advanced vector representation of information and dynamic routing. In this paper, we validate this hypothesis using SegCaps, a capsule network, by direct comparison, individual comparison with CT severity score, and comparing the relative effect on a ML(machine learning)-based prognosis model developed elsewhere. We further provide a scenario, where a combination of UNet++ and SegCaps achieves improved performance compared to individual models.

摘要

在当前的 COVID-19 大流行期间,临床医生在治疗过程中生成了大量的肺部影像学检查。重要的是,需要精确地量化与疾病结局相关的肺部炎症严重程度。在高需求的情况下,产生一致和准确的报告可能是一个挑战,如果在胸部 CT 扫描中量化肺部炎症时存在显著的观察者间或观察者内变异性,可能会影响患者的护理。在此背景下,最近使用 UNet++(一种卷积神经网络(CNN))尝试了自动分割,并且已经报告了与手动方法相当的结果。在本文中,我们假设可以使用胶囊网络以可比的效率完成所需的任务,该网络使用信息的高级向量表示和动态路由,参数更少。在本文中,我们通过直接比较、与 CT 严重程度评分的单独比较以及比较在其他地方开发的基于 ML(机器学习)的预后模型的相对影响,使用 SegCaps(一种胶囊网络)验证了这一假设。我们还提供了一种情况,其中 UNet++和 SegCaps 的组合与单个模型相比实现了性能的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验