Suppr超能文献

基于对接和同源建模的抗体表位作图。

Mapping of antibody epitopes based on docking and homology modeling.

机构信息

Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.

Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, USA.

出版信息

Proteins. 2023 Feb;91(2):171-182. doi: 10.1002/prot.26420. Epub 2022 Sep 30.

Abstract

Antibodies are key proteins produced by the immune system to target pathogen proteins termed antigens via specific binding to surface regions called epitopes. Given an antigen and the sequence of an antibody the knowledge of the epitope is critical for the discovery and development of antibody based therapeutics. In this work, we present a computational protocol that uses template-based modeling and docking to predict epitope residues. This protocol is implemented in three major steps. First, a template-based modeling approach is used to build the antibody structures. We tested several options, including generation of models using AlphaFold2. Second, each antibody model is docked to the antigen using the fast Fourier transform (FFT) based docking program PIPER. Attention is given to optimally selecting the docking energy parameters depending on the input data. In particular, the van der Waals energy terms are reduced for modeled antibodies relative to x-ray structures. Finally, ranking of antigen surface residues is produced. The ranking relies on the docking results, that is, how often the residue appears in the docking poses' interface, and also on the energy favorability of the docking pose in question. The method, called PIPER-Map, has been tested on a widely used antibody-antigen docking benchmark. The results show that PIPER-Map improves upon the existing epitope prediction methods. An interesting observation is that epitope prediction accuracy starting from antibody sequence alone does not significantly differ from that of starting from unbound (i.e., separately crystallized) antibody structure.

摘要

抗体是免疫系统产生的关键蛋白质,通过与称为表位的表面区域特异性结合来靶向病原体蛋白抗原。给定抗原和抗体的序列,表位的知识对于抗体为基础的治疗药物的发现和开发至关重要。在这项工作中,我们提出了一种使用基于模板的建模和对接来预测表位残基的计算方案。该方案分为三个主要步骤实施。首先,使用基于模板的建模方法构建抗体结构。我们测试了几种选择,包括使用 AlphaFold2 生成模型。其次,使用基于快速傅里叶变换(FFT)的对接程序 PIPER 将每个抗体模型对接至抗原。注意根据输入数据优化选择对接能量参数。特别是,相对于 X 射线结构,对建模抗体的范德华能项进行了降低。最后,产生抗原表面残基的排序。排序依赖于对接结果,即残基出现在对接构象的界面中的频率,以及对接构象的能量有利性。该方法称为 PIPER-Map,已在广泛使用的抗体 - 抗原对接基准测试中进行了测试。结果表明,PIPER-Map 优于现有的表位预测方法。一个有趣的观察结果是,仅从抗体序列开始的表位预测准确性与从未结合(即单独结晶)的抗体结构开始的预测准确性没有显著差异。

相似文献

2
The ClusPro AbEMap web server for the prediction of antibody epitopes.ClusPro AbEMap 网络服务器,用于预测抗体表位。
Nat Protoc. 2023 Jun;18(6):1814-1840. doi: 10.1038/s41596-023-00826-7. Epub 2023 May 15.

引用本文的文献

8
The ClusPro AbEMap web server for the prediction of antibody epitopes.ClusPro AbEMap 网络服务器,用于预测抗体表位。
Nat Protoc. 2023 Jun;18(6):1814-1840. doi: 10.1038/s41596-023-00826-7. Epub 2023 May 15.
9
AlphaFold, allosteric, and orthosteric drug discovery: Ways forward.AlphaFold、变构和经典药物发现:前进的道路。
Drug Discov Today. 2023 Jun;28(6):103551. doi: 10.1016/j.drudis.2023.103551. Epub 2023 Mar 11.

本文引用的文献

1
ColabFold: making protein folding accessible to all.ColabFold:让蛋白质折叠变得人人可用。
Nat Methods. 2022 Jun;19(6):679-682. doi: 10.1038/s41592-022-01488-1. Epub 2022 May 30.
2
Applying and improving AlphaFold at CASP14.应用和改进 AlphaFold 参加 CASP14。
Proteins. 2021 Dec;89(12):1711-1721. doi: 10.1002/prot.26257.
3
Highly accurate protein structure prediction for the human proteome.高精准度的人类蛋白质组蛋白结构预测。
Nature. 2021 Aug;596(7873):590-596. doi: 10.1038/s41586-021-03828-1. Epub 2021 Jul 22.
4
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
5
Computational epitope map of SARS-CoV-2 spike protein.SARS-CoV-2 刺突蛋白的计算表位图谱。
PLoS Comput Biol. 2021 Apr 1;17(4):e1008790. doi: 10.1371/journal.pcbi.1008790. eCollection 2021 Apr.
8
Performance and Its Limits in Rigid Body Protein-Protein Docking.刚体蛋白质-蛋白质对接的性能及其限制。
Structure. 2020 Sep 1;28(9):1071-1081.e3. doi: 10.1016/j.str.2020.06.006. Epub 2020 Jul 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验