Suppr超能文献

一种用于对有呼吸道感染症状的患者进行风险分层的生物标志物检测方法。

A biomarker assay to risk-stratify patients with symptoms of respiratory tract infection.

机构信息

Division of Infectious Diseases, Toronto General Hospital, University Health Network, University of Toronto, Toronto, ON, Canada.

Toronto Lung Transplant Program and Latner Thoracic Research Laboratories, Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, ON, Canada.

出版信息

Eur Respir J. 2022 Dec 15;60(6). doi: 10.1183/13993003.00459-2022. Print 2022 Dec.

Abstract

BACKGROUND

Patients who present to an emergency department (ED) with respiratory symptoms are often conservatively triaged in favour of hospitalisation. We sought to determine if an inflammatory biomarker panel that identifies the host response better predicts hospitalisation in order to improve the precision of clinical decision making in the ED.

METHODS

From April 2020 to March 2021, plasma samples of 641 patients with symptoms of respiratory illness were collected from EDs in an international multicentre study: Canada (n=310), Italy (n=131) and Brazil (n=200). Patients were followed prospectively for 28 days. Subgroup analysis was conducted on confirmed coronavirus disease 2019 (COVID-19) patients (n=245). An inflammatory profile was determined using a rapid, 50-min, biomarker panel (RALI-Dx (Rapid Acute Lung Injury Diagnostic)), which measures interleukin (IL)-6, IL-8, IL-10, soluble tumour necrosis factor receptor 1 (sTNFR1) and soluble triggering receptor expressed on myeloid cells 1 (sTREM1).

RESULTS

RALI-Dx biomarkers were significantly elevated in patients who required hospitalisation across all three sites. A machine learning algorithm that was applied to predict hospitalisation using RALI-Dx biomarkers had a mean±sd area under the receiver operating characteristic curve of 76±6% (Canada), 84±4% (Italy) and 86±3% (Brazil). Model performance was 82±3% for COVID-19 patients and 87±7% for patients with a confirmed pneumonia diagnosis.

CONCLUSIONS

The rapid diagnostic biomarker panel accurately identified the need for inpatient care in patients presenting with respiratory symptoms, including COVID-19. The RALI-Dx test is broadly and easily applicable across many jurisdictions, and represents an important diagnostic adjunct to advance ED decision-making protocols.

摘要

背景

因呼吸系统症状而到急诊科就诊的患者通常被谨慎分诊为住院治疗。我们旨在确定一种更好地识别宿主反应的炎症生物标志物面板是否可以预测住院治疗,从而提高急诊科临床决策的准确性。

方法

在这项国际性多中心研究中,我们于 2020 年 4 月至 2021 年 3 月期间从急诊科采集了 641 例有呼吸系统疾病症状患者的血浆样本:加拿大(n=310)、意大利(n=131)和巴西(n=200)。前瞻性随访患者 28 天。对确诊的 2019 冠状病毒病(COVID-19)患者(n=245)进行亚组分析。使用快速(50 分钟)的生物标志物面板(RALI-Dx(快速急性肺损伤诊断))测定炎症谱,该面板测量白细胞介素(IL)-6、IL-8、IL-10、可溶性肿瘤坏死因子受体 1(sTNFR1)和髓系细胞触发受体 1(sTREM1)可溶性形式。

结果

在所有三个地点,需要住院治疗的患者的 RALI-Dx 生物标志物显著升高。应用于使用 RALI-Dx 生物标志物预测住院的机器学习算法的平均+标准差接受者操作特征曲线下面积分别为 76±6%(加拿大)、84±4%(意大利)和 86±3%(巴西)。COVID-19 患者的模型性能为 82±3%,确诊肺炎患者为 87±7%。

结论

快速诊断生物标志物面板准确识别出有呼吸系统症状的患者(包括 COVID-19 患者)住院治疗的必要性。RALI-Dx 测试在许多司法管辖区广泛且易于应用,代表了一种重要的诊断辅助手段,可用于改进急诊科决策制定方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a00/9753477/68f6743920a9/ERJ-00459-2022.01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验