Chun Joo Young, Kim Hyun-Jin, Hur Ji-Won, Jung Dooyoung, Lee Heon-Jeong, Pack Seung Pil, Lee Sungkil, Kim Gerard, Cho Chung-Yean, Lee Seung-Moo, Lee Hyeri, Choi Seungmoon, Cheong Taesu, Cho Chul-Hyun
School of Industrial and Management Engineering, Korea University, Seoul, Republic of Korea.
Department of Psychiatry, Chungnam National University Sejong Hospital, Sejong, Republic of Korea.
JMIR Serious Games. 2022 Sep 16;10(3):e38284. doi: 10.2196/38284.
Social anxiety disorder (SAD) is the fear of social situations where a person anticipates being evaluated negatively. Changes in autonomic response patterns are related to the expression of anxiety symptoms. Virtual reality (VR) sickness can inhibit VR experiences.
This study aimed to predict the severity of specific anxiety symptoms and VR sickness in patients with SAD, using machine learning based on in situ autonomic physiological signals (heart rate and galvanic skin response) during VR treatment sessions.
This study included 32 participants with SAD taking part in 6 VR sessions. During each VR session, the heart rate and galvanic skin response of all participants were measured in real time. We assessed specific anxiety symptoms using the Internalized Shame Scale (ISS) and the Post-Event Rumination Scale (PERS), and VR sickness using the Simulator Sickness Questionnaire (SSQ) during 4 VR sessions (#1, #2, #4, and #6). Logistic regression, random forest, and naïve Bayes classification classified and predicted the severity groups in the ISS, PERS, and SSQ subdomains based on in situ autonomic physiological signal data.
The severity of SAD was predicted with 3 machine learning models. According to the F1 score, the highest prediction performance among each domain for severity was determined. The F1 score of the ISS mistake anxiety subdomain was 0.8421 using the logistic regression model, that of the PERS positive subdomain was 0.7619 using the naïve Bayes classifier, and that of total VR sickness was 0.7059 using the random forest model.
This study could predict specific anxiety symptoms and VR sickness during VR intervention by autonomic physiological signals alone in real time. Machine learning models can predict the severe and nonsevere psychological states of individuals based on in situ physiological signal data during VR interventions for real-time interactive services. These models can support the diagnosis of specific anxiety symptoms and VR sickness with minimal participant bias.
Clinical Research Information Service KCT0003854; https://cris.nih.go.kr/cris/search/detailSearch.do/13508.
社交焦虑障碍(SAD)是指个体在预期会受到负面评价的社交场合中感到恐惧。自主神经反应模式的变化与焦虑症状的表现有关。虚拟现实(VR)不适会影响VR体验。
本研究旨在利用基于VR治疗过程中现场自主神经生理信号(心率和皮肤电反应)的机器学习方法,预测SAD患者特定焦虑症状的严重程度和VR不适情况。
本研究纳入了32名患有SAD的参与者,他们参加了6次VR治疗。在每次VR治疗过程中,实时测量所有参与者的心率和皮肤电反应。在4次VR治疗(第1、2、4和6次)期间,我们使用内化羞耻量表(ISS)和事后反刍量表(PERS)评估特定焦虑症状,并使用模拟器不适问卷(SSQ)评估VR不适。基于现场自主神经生理信号数据,采用逻辑回归、随机森林和朴素贝叶斯分类方法对ISS、PERS和SSQ子域中的严重程度组进行分类和预测。
使用3种机器学习模型预测了SAD的严重程度。根据F1分数,确定了每个领域中严重程度的最高预测性能。使用逻辑回归模型时,ISS错误焦虑子域的F1分数为0.8421;使用朴素贝叶斯分类器时,PERS积极子域的F1分数为0.7619;使用随机森林模型时,总VR不适的F1分数为0.7059。
本研究能够仅通过自主神经生理信号实时预测VR干预期间的特定焦虑症状和VR不适。机器学习模型可以根据VR干预期间的现场生理信号数据预测个体的严重和非严重心理状态,以提供实时交互服务。这些模型可以在最小化参与者偏差的情况下支持特定焦虑症状和VR不适的诊断。
临床研究信息服务KCT0003854;https://cris.nih.go.kr/cris/search/detailSearch.do/13508 。