Lab for Artificial Intelligence in Medical Imaging, Department of Medicine, Ludwig Maximilians University Munich, Munich, Germany.
Lab for Artificial Intelligence in Medical Imaging, Institute of Diagnostic and Interventional Radiology, Technical University of Munich, Munich, Germany.
BMC Med Imaging. 2022 Sep 17;22(1):168. doi: 10.1186/s12880-022-00893-4.
Whole-body imaging has recently been added to large-scale epidemiological studies providing novel opportunities for investigating abdominal organs. However, the segmentation of these organs is required beforehand, which is time consuming, particularly on such a large scale.
We introduce AbdomentNet, a deep neural network for the automated segmentation of abdominal organs on two-point Dixon MRI scans. A pre-processing pipeline enables to process MRI scans from different imaging studies, namely the German National Cohort, UK Biobank, and Kohorte im Raum Augsburg. We chose a total of 61 MRI scans across the three studies for training an ensemble of segmentation networks, which segment eight abdominal organs. Our network presents a novel combination of octave convolutions and squeeze and excitation layers, as well as training with stochastic weight averaging.
Our experiments demonstrate that it is beneficial to combine data from different imaging studies to train deep neural networks in contrast to training separate networks. Combining the water and opposed-phase contrasts of the Dixon sequence as input channels, yields the highest segmentation accuracy, compared to single contrast inputs. The mean Dice similarity coefficient is above 0.9 for larger organs liver, spleen, and kidneys, and 0.71 and 0.74 for gallbladder and pancreas, respectively.
Our fully automated pipeline provides high-quality segmentations of abdominal organs across population studies. In contrast, a network that is only trained on a single dataset does not generalize well to other datasets.
全身成像最近已被添加到大型流行病学研究中,为研究腹部器官提供了新的机会。然而,在此之前需要对这些器官进行分割,这是一项耗时的工作,特别是在如此大规模的情况下。
我们引入了 AbdomentNet,这是一种用于在两点 Dixon MRI 扫描上自动分割腹部器官的深度神经网络。一个预处理管道可以处理来自不同成像研究的 MRI 扫描,即德国国家队列、英国生物库和奥格斯堡地区队列。我们选择了来自这三个研究的总共 61 个 MRI 扫描来训练一个分割网络的集合,该网络分割八个腹部器官。我们的网络提出了一种新的八度卷积和挤压激励层的组合,以及使用随机权重平均进行训练。
我们的实验表明,与单独训练网络相比,从不同成像研究中组合数据来训练深度神经网络是有益的。与单对比度输入相比,将 Dixon 序列的水相和反相对比度组合作为输入通道,可以获得最高的分割精度。对于较大的器官(肝、脾和肾),平均 Dice 相似系数大于 0.9,对于胆囊和胰腺,分别为 0.71 和 0.74。
我们的全自动流水线提供了跨人群研究的高质量腹部器官分割。相比之下,仅在单个数据集上训练的网络不能很好地泛化到其他数据集。