Suppr超能文献

减少党派敌意的干预措施。

Interventions to reduce partisan animosity.

机构信息

Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.

Department of Sociology, Duke University, Durham, NC, USA.

出版信息

Nat Hum Behav. 2022 Sep;6(9):1194-1205. doi: 10.1038/s41562-022-01442-3. Epub 2022 Sep 19.

Abstract

Rising partisan animosity is associated with a reduction in support for democracy and an increase in support for political violence. Here we provide a multi-level review of interventions designed to reduce partisan animosity, which we define as negative thoughts, feelings and behaviours towards a political outgroup. We introduce the TRI framework to capture three levels of intervention-thoughts (correcting misconceptions and highlighting commonalities), relationships (building dialogue skills and fostering positive contact) and institutions (changing public discourse and transforming political structures)-and connect these levels by highlighting the importance of motivation and mobilization. Our review encompasses both interventions conducted as part of academic research projects and real-world interventions led by practitioners in non-profit organizations. We also explore the challenges of durability and scalability, examine self-fulfilling polarization and interventions that backfire, and discuss future directions for reducing partisan animosity.

摘要

党派敌意的上升与对民主的支持减少和对政治暴力的支持增加有关。在这里,我们提供了一个多层次的干预措施综述,旨在减少党派敌意,我们将其定义为对政治外群体的负面想法、感受和行为。我们引入了 TRI 框架来捕捉三个干预层面——思想(纠正误解和强调共同点)、关系(培养对话技能和促进积极接触)和制度(改变公共话语和改变政治结构)——并通过强调动机和动员的重要性来连接这些层面。我们的综述包括作为学术研究项目一部分进行的干预措施和由非营利组织的从业者领导的现实世界干预措施。我们还探讨了耐久性和可扩展性的挑战,研究了自我实现的极化和适得其反的干预措施,并讨论了减少党派敌意的未来方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验