Wang Jingwan, Li Shiying, Chen Lingxi, Li Shuai Cheng
Department of Computer Science, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Hong Kong, China.
City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057 Guangdong, China.
NAR Genom Bioinform. 2022 Sep 15;4(3):lqac069. doi: 10.1093/nargab/lqac069. eCollection 2022 Sep.
Single-cell RNA sequencing thoroughly quantifies the individual cell transcriptomes but renounces the spatial structure. Conversely, recently emerged spatial transcriptomics technologies capture the cellular spatial structure but skimp cell or gene resolutions. Ligand-receptor interactions reveal the potential of cell proximity since they are spatially constrained. Cell-cell affinity values estimated by ligand-receptor interaction can partially represent the structure of cells but falsely include the pseudo affinities between distant or indirectly interacting cells. Here, we develop a software package, SPROUT, to reconstruct the single-cell resolution spatial structure from the transcriptomics data through diminished pseudo ligand-receptor affinities. For spatial data, SPROUT first curates the representative single-cell profiles for each spatial spot from a candidate library, then reduces the pseudo affinities in the intercellular affinity matrix by partial correlation, spectral graph sparsification, and spatial coordinates refinement. SPROUT embeds the estimated interactions into a low-dimensional space with the cross-entropy objective to restore the intercellular structures, which facilitates the discovery of dominant ligand-receptor pairs between neighboring cells at single-cell resolution. SPROUT reconstructed structures achieved shape Pearson correlations ranging from 0.91 to 0.97 on the mouse hippocampus and human organ tumor microenvironment datasets. Furthermore, SPROUT can solely reconstruct the structures at single-cell resolution, ., reaching the cell-type proximity correlations of 0.68 and 0.89 between reconstructed and immunohistochemistry-informed spatial structures on a human developing heart dataset and a tumor microenvironment dataset, respectively.
单细胞RNA测序能够全面量化单个细胞的转录组,但舍弃了空间结构。相反,最近出现的空间转录组学技术能够捕捉细胞的空间结构,但在细胞或基因分辨率方面有所欠缺。配体-受体相互作用揭示了细胞间接近的潜力,因为它们受到空间限制。通过配体-受体相互作用估计的细胞-细胞亲和力值可以部分代表细胞结构,但错误地包含了远距离或间接相互作用细胞之间的伪亲和力。在此,我们开发了一个软件包SPROUT,通过减少伪配体-受体亲和力,从转录组学数据中重建单细胞分辨率的空间结构。对于空间数据,SPROUT首先从候选库中为每个空间点挑选代表性的单细胞图谱,然后通过偏相关、谱图稀疏化和空间坐标细化来降低细胞间亲和力矩阵中的伪亲和力。SPROUT将估计的相互作用嵌入到具有交叉熵目标的低维空间中,以恢复细胞间结构,这有助于在单细胞分辨率下发现相邻细胞之间的主要配体-受体对。在小鼠海马体和人类器官肿瘤微环境数据集上,SPROUT重建的结构形状皮尔逊相关系数在0.91至0.97之间。此外,SPROUT能够仅在单细胞分辨率下重建结构,即在人类发育心脏数据集和肿瘤微环境数据集上,重建的空间结构与免疫组织化学告知的空间结构之间的细胞类型接近相关系数分别达到0.68和0.89。