Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA.
Genome Biol. 2021 May 10;22(1):145. doi: 10.1186/s13059-021-02362-7.
Recent development of spatial transcriptomic technologies has made it possible to characterize cellular heterogeneity with spatial information. However, the technology often does not have sufficient resolution to distinguish neighboring cell types. Here, we present spatialDWLS, to quantitatively estimate the cell-type composition at each spatial location. We benchmark the performance of spatialDWLS by comparing it with a number of existing deconvolution methods and find that spatialDWLS outperforms the other methods in terms of accuracy and speed. By applying spatialDWLS to a human developmental heart dataset, we observe striking spatial temporal changes of cell-type composition during development.
最近空间转录组技术的发展使得能够以空间信息来描述细胞异质性。然而,该技术通常没有足够的分辨率来区分相邻的细胞类型。在这里,我们提出了 spatialDWLS,以定量估计每个空间位置的细胞类型组成。我们通过与许多现有的去卷积方法进行比较来评估 spatialDWLS 的性能,发现 spatialDWLS 在准确性和速度方面优于其他方法。通过将 spatialDWLS 应用于人类发育心脏数据集,我们观察到在发育过程中细胞类型组成的显著时空变化。