Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, United States of America.
Department of Pediatrics, University of California, San Diego, La Jolla, California, United States of America.
PLoS Comput Biol. 2022 Nov 17;18(11):e1010715. doi: 10.1371/journal.pcbi.1010715. eCollection 2022 Nov.
Cell-cell interactions shape cellular function and ultimately organismal phenotype. Interacting cells can sense their mutual distance using combinations of ligand-receptor pairs, suggesting the existence of a spatial code, i.e., signals encoding spatial properties of cellular organization. However, this code driving and sustaining the spatial organization of cells remains to be elucidated. Here we present a computational framework to infer the spatial code underlying cell-cell interactions from the transcriptomes of the cell types across the whole body of a multicellular organism. As core of this framework, we introduce our tool cell2cell, which uses the coexpression of ligand-receptor pairs to compute the potential for intercellular interactions, and we test it across the Caenorhabditis elegans' body. Leveraging a 3D atlas of C. elegans' cells, we also implement a genetic algorithm to identify the ligand-receptor pairs most informative of the spatial organization of cells across the whole body. Validating the spatial code extracted with this strategy, the resulting intercellular distances are negatively correlated with the inferred cell-cell interactions. Furthermore, for selected cell-cell and ligand-receptor pairs, we experimentally confirm the communicatory behavior inferred with cell2cell and the genetic algorithm. Thus, our framework helps identify a code that predicts the spatial organization of cells across a whole-animal body.
细胞间的相互作用塑造了细胞的功能,并最终决定了生物体的表型。相互作用的细胞可以通过配体-受体对的组合来感知它们之间的相互距离,这表明存在一种空间编码,即编码细胞组织空间特性的信号。然而,驱动和维持细胞空间组织的这种编码仍然需要阐明。在这里,我们提出了一个计算框架,从多细胞生物体整个身体的细胞类型的转录组中推断出细胞间相互作用的空间编码。作为该框架的核心,我们引入了我们的工具 cell2cell,它使用配体-受体对的共表达来计算细胞间相互作用的潜力,并在秀丽隐杆线虫的身体上进行了测试。利用秀丽隐杆线虫细胞的 3D 图谱,我们还实施了遗传算法来识别最能反映整个生物体中细胞空间组织的配体-受体对。通过这种策略提取的空间编码进行验证,得到的细胞间距离与推断出的细胞间相互作用呈负相关。此外,对于选定的细胞-细胞和配体-受体对,我们通过实验证实了 cell2cell 和遗传算法推断出的通讯行为。因此,我们的框架有助于确定一种可以预测整个动物体中细胞空间组织的编码。