Suppr超能文献

一种基于学习的扩展单元胞超光栅设计方法。

A learning based approach for designing extended unit cell metagratings.

作者信息

Panda Soumyashree S, Hegde Ravi S

机构信息

Department of Electrical Engineering, IIT Gandhinagar, Gandhinagar, 382355, India.

出版信息

Nanophotonics. 2021 Dec 8;11(2):345-358. doi: 10.1515/nanoph-2021-0540. eCollection 2022 Jan.

Abstract

The possibility of arbitrary spatial control of incident wavefronts with the subwavelength resolution has driven research into dielectric optical metasurfaces in the last decade. The unit-cell based metasurface design approach that relies on a library of single element responses is known to result in reduced efficiency attributed to the inadequate accounting of the coupling effects between meta-atoms. Metasurfaces with extended unit-cells containing multiple resonators can improve design outcomes but their design requires extensive numerical computing and optimizations. We report a deep learning based design methodology for the inverse design of extended unit-cell metagratings. In contrast to previous reports, our approach learns the metagrating spectral response across its reflected and transmitted orders. Through systematic exploration, we discover network architectures and training dataset sampling strategies that allow such learning without requiring extensive ground-truth generation. The one-time investment of model creation can then be used to significantly accelerate numerical optimization of multiple functionalities as demonstrated by considering the inverse design of various spectral and polarization dependent splitters and filters. The proposed methodology is not limited to these proof-of-concept demonstrations and can be broadly applied to meta-atom-based nanophotonic system design and in realising the next generation of metasurface functionalities with improved performance.

摘要

在过去十年中,能够以亚波长分辨率对入射波前进行任意空间控制的可能性推动了对介电光学超表面的研究。基于单元结构的超表面设计方法依赖于单个元件响应库,已知由于对元原子之间耦合效应的考虑不足,会导致效率降低。包含多个谐振器的扩展单元结构的超表面可以改善设计结果,但其设计需要大量的数值计算和优化。我们报告了一种基于深度学习的方法,用于扩展单元结构超光栅的逆向设计。与之前的报告不同,我们的方法学习超光栅在其反射和透射阶次上的光谱响应。通过系统探索,我们发现了网络架构和训练数据集采样策略,这些策略允许在不需要大量生成真实数据的情况下进行这种学习。然后,模型创建的一次性投入可用于显著加速多种功能的数值优化,如通过考虑各种光谱和偏振相关的分束器和滤波器的逆向设计所证明的那样。所提出的方法不仅限于这些概念验证演示,还可广泛应用于基于元原子的纳米光子系统设计,并用于实现具有更高性能的下一代超表面功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb16/11501505/df90bf52599d/j_nanoph-2021-0540_fig_001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验