Iravani Parisa, Iravani Siavash, Varma Rajender S
School of Medicine, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
Micromachines (Basel). 2022 Aug 25;13(9):1383. doi: 10.3390/mi13091383.
Today, MXenes with fascinating electronic, thermal, optical, and mechanical features have been broadly studied for biomedical applications, such as drug/gene delivery, photothermal/photodynamic therapy, antimicrobials/antivirals, sensing, tissue engineering, and regenerative medicine. In this context, various MXene-polymer composites have been designed to improve the characteristics such as physiological stability, sustained/controlled release behaviors, biodegradability, biocompatibility, selectivity/sensitivity, and functionality. Chitosan with advantages of ease of modification, biodegradability, antibacterial activities, non-toxicity, and biocompatibility can be considered as attractive materials for designing hybridized composites together with MXenes. These hybrid composites ought to be further explored for biomedical applications because of their unique properties such as high photothermal conversion efficiency, improved stability, selectivity/sensitivity, stimuli-responsiveness behaviors, and superior antibacterial features. These unique structural, functional, and biological attributes indicate that MXene-chitosan composites are attractive alternatives in biomedical engineering. However, several crucial aspects regarding the surface functionalization/modification, hybridization, nanotoxicological analyses, long-term biosafety assessments, biocompatibility, in vitro/in vivo evaluations, identification of optimization conditions, implementation of environmentally-benign synthesis techniques, and clinical translation studies are still need to be examined by researchers. Although very limited studies have revealed the great potentials of MXene-chitosan hybrids in biomedicine, the next steps should be toward the extensive research and detailed analyses in optimizing their properties and improving their functionality with a clinical and industrial outlook. Herein, recent developments in the use of MXene-chitosan composites with biomedical potentials are deliberated, with a focus on important challenges and future perspectives. In view of the fascinating properties and multifunctionality of MXene-chitosan composites, these hybrid materials can open significant new opportunities in the future for bio- and nano-medicine arena.
如今,具有迷人电子、热、光学和机械特性的MXenes已被广泛研究用于生物医学应用,如药物/基因递送、光热/光动力疗法、抗菌/抗病毒、传感、组织工程和再生医学。在这种背景下,人们设计了各种MXene-聚合物复合材料来改善其生理稳定性、持续/控释行为、生物降解性、生物相容性、选择性/敏感性和功能性等特性。壳聚糖具有易于改性、生物降解性、抗菌活性、无毒和生物相容性等优点,可被视为与MXenes一起设计杂化复合材料的有吸引力的材料。由于这些杂化复合材料具有高光热转换效率、提高的稳定性、选择性/敏感性、刺激响应行为和优异的抗菌特性等独特性能,因此应进一步探索其在生物医学应用中的潜力。这些独特的结构、功能和生物学特性表明,MXene-壳聚糖复合材料是生物医学工程中具有吸引力的替代品。然而,关于表面功能化/改性、杂化、纳米毒理学分析、长期生物安全性评估、生物相容性、体外/体内评估、优化条件的确定、环境友好型合成技术的实施以及临床转化研究等几个关键方面仍需研究人员进行考察。尽管非常有限的研究已经揭示了MXene-壳聚糖杂化物在生物医学中的巨大潜力,但接下来应该朝着广泛的研究和详细的分析方向发展,以优化其性能并从临床和工业角度提高其功能性。在此,我们探讨了具有生物医学潜力的MXene-壳聚糖复合材料的最新进展,重点关注重要挑战和未来前景。鉴于MXene-壳聚糖复合材料的迷人特性和多功能性,这些杂化材料未来可为生物和纳米医学领域带来重大新机遇。