Suppr超能文献

基于视觉Transformer的胸部 X 射线图像肺病检测的优化。

Optimization of vision transformer-based detection of lung diseases from chest X-ray images.

机构信息

Department of Physiology, Ajou University School of Medicine, Suwon, Republic of Korea.

Department of Biomedical Science, Graduate School, Ajou University, Suwon, Republic of Korea.

出版信息

BMC Med Inform Decis Mak. 2024 Jul 8;24(1):191. doi: 10.1186/s12911-024-02591-3.

Abstract

BACKGROUND

Recent advances in Vision Transformer (ViT)-based deep learning have significantly improved the accuracy of lung disease prediction from chest X-ray images. However, limited research exists on comparing the effectiveness of different optimizers for lung disease prediction within ViT models. This study aims to systematically evaluate and compare the performance of various optimization methods for ViT-based models in predicting lung diseases from chest X-ray images.

METHODS

This study utilized a chest X-ray image dataset comprising 19,003 images containing both normal cases and six lung diseases: COVID-19, Viral Pneumonia, Bacterial Pneumonia, Middle East Respiratory Syndrome (MERS), Severe Acute Respiratory Syndrome (SARS), and Tuberculosis. Each ViT model (ViT, FastViT, and CrossViT) was individually trained with each optimization method (Adam, AdamW, NAdam, RAdam, SGDW, and Momentum) to assess their performance in lung disease prediction.

RESULTS

When tested with ViT on the dataset with balanced-sample sized classes, RAdam demonstrated superior accuracy compared to other optimizers, achieving 95.87%. In the dataset with imbalanced sample size, FastViT with NAdam achieved the best performance with an accuracy of 97.63%.

CONCLUSIONS

We provide comprehensive optimization strategies for developing ViT-based model architectures, which can enhance the performance of these models for lung disease prediction from chest X-ray images.

摘要

背景

基于 Vision Transformer(ViT)的深度学习的最新进展极大地提高了从胸部 X 光图像预测肺部疾病的准确性。然而,关于比较不同优化器在 ViT 模型中预测肺部疾病的有效性的研究有限。本研究旨在系统评估和比较各种优化方法在基于 ViT 的模型中预测胸部 X 光图像中肺部疾病的性能。

方法

本研究使用了一个包含 19003 张图像的胸部 X 光图像数据集,其中包含正常病例和六种肺部疾病:COVID-19、病毒性肺炎、细菌性肺炎、中东呼吸综合征(MERS)、严重急性呼吸综合征(SARS)和结核病。每个 ViT 模型(ViT、FastViT 和 CrossViT)都分别使用每个优化方法(Adam、AdamW、NAdam、RAdam、SGDW 和 Momentum)进行训练,以评估它们在肺部疾病预测中的性能。

结果

当在具有平衡样本大小类别的数据集上使用 ViT 进行测试时,RAdam 与其他优化器相比表现出更高的准确性,达到 95.87%。在具有不平衡样本大小的数据集上,使用 NAdam 的 FastViT 实现了最佳性能,准确率为 97.63%。

结论

我们为开发基于 ViT 的模型架构提供了全面的优化策略,这可以提高这些模型从胸部 X 光图像预测肺部疾病的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bafc/11232177/6fa4e1d89218/12911_2024_2591_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验