Department of Chemistry & Biochemistry, Baylor University, 101 Bagby Avenue, Waco, Texas 76710, United States.
Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205, United States.
J Am Chem Soc. 2022 Oct 12;144(40):18575-18585. doi: 10.1021/jacs.2c08245. Epub 2022 Sep 27.
A pharmacophore-directed retrosynthetic strategy was applied to the first total synthesis of the cembranoid rameswaralide in order to simultaneously achieve a total synthesis while also developing a structure-activity relationship profile throughout the synthetic effort. The synthesis utilized a Diels-Alder lactonization process, including a rare kinetic resolution to demonstrate the potential of this strategy for an enantioselective synthesis providing both the 5,5,6- and, through a ring expansion, 5,5,7-tricyclic ring systems present in several soft coral cembranoids. A pivotal synthetic intermediate, a tricyclic epoxy α-bromo cycloheptenone, displayed high cytotoxicity with interesting selectivity toward the HCT-116 colon cancer cell line. This intermediate enabled the pursuit of three unique D-ring annulation strategies including a photocatalyzed intramolecular Giese-type radical cyclization and a diastereoselective, intramolecular enamine-mediated Michael addition, with the latter annulation constructing the final D-ring to deliver rameswaralide. The serendipitous discovery of an oxidation state transposition of the tricyclic epoxy cycloheptenone proceeding through a presumed doubly vinylogous, E1-type elimination enabled the facile introduction of the required α-methylene butyrolactone. Preliminary biological tests of rameswaralide and precursors demonstrated weak cytotoxicity; however, the comparable cytotoxicity of a simple 6,7-bicyclic β-keto ester, corresponding to the CD-ring system of rameswaralide, to that of the natural product itself suggests that such bicyclic β-ketoesters may constitute an interesting pharmacophore that warrants further exploration.
一种基于药效团的反合成策略被应用于cembranoid rameswaralide 的首次全合成,以在完成全合成的同时建立一个结构-活性关系谱。该合成利用 Diels-Alder 内酯化过程,包括罕见的动力学拆分,展示了这种策略在对映选择性合成方面的潜力,为几种软珊瑚cembranoids 中存在的 5,5,6-和通过环扩张的 5,5,7-三环体系提供了同时构建。一个关键的合成中间体,三环环氧α-溴环庚烯酮,表现出高细胞毒性,对 HCT-116 结肠癌细胞系具有有趣的选择性。这个中间体使我们能够追求三种独特的 D-环环合策略,包括光催化的分子内 Giese 型自由基环化和非对映选择性的分子内烯胺介导的迈克尔加成,后者的环合构建了最终的 D-环,得到 rameswaralide。三环环氧环庚烯酮的氧化态易位的意外发现,通过假定的双 vinylogous,E1 型消除进行,使得引入所需的α-亚甲基丁内酯变得容易。rameswaralide 和前体的初步生物学测试显示出微弱的细胞毒性;然而,简单的 6,7-双环β-酮酯(与 rameswaralide 的 CD-环系统相对应)与天然产物本身相当的细胞毒性表明,这种双环β-酮酯可能构成一个有趣的药效团,值得进一步探索。