Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India.
Department of Chemical Engineering, Birla Institute of Technology and Science (BITS), Pilani Campus, Pilani, India.
Commun Biol. 2022 Oct 1;5(1):1044. doi: 10.1038/s42003-022-04014-3.
Blood vessel branch points exhibiting oscillatory/turbulent flow and lower wall shear stress (WSS) are the primary sites of atherosclerosis development. Vascular endothelial functions are essentially dependent on these tangible biomechanical forces including WSS. Herein, we explored the influence of blood vessel bifurcation angles on hemodynamic alterations and associated changes in endothelial function. We generated computer-aided design of a branched human coronary artery followed by 3D printing such designs with different bifurcation angles. Through computational fluid dynamics analysis, we observed that a larger branching angle generated more complex turbulent/oscillatory hemodynamics to impart minimum WSS at branching points. Through the detection of biochemical markers, we recorded significant alteration in eNOS, ICAM1, and monocyte attachment in EC grown in microchannel having 60 vessel branching angle which correlated with the lower WSS. The present study highlights the importance of blood vessel branching angle as one of the crucial determining factors in governing atherogenic-endothelial dysfunction.
血管分支点表现出振荡/湍流流动和较低的壁面剪切应力 (WSS),是动脉粥样硬化发展的主要部位。血管内皮功能本质上取决于这些有形的生物力学力,包括 WSS。在此,我们探讨了血管分叉角度对血流动力学变化和相关内皮功能变化的影响。我们生成了分支人类冠状动脉的计算机辅助设计,然后使用不同分叉角度的 3D 打印设计。通过计算流体动力学分析,我们观察到较大的分支角度产生了更复杂的湍流/振荡血流动力学,从而在分支点产生最小的 WSS。通过生化标志物的检测,我们记录到在具有 60 度血管分支角度的微通道中生长的 EC 中的 eNOS、ICAM1 和单核细胞附着有显著变化,这与较低的 WSS 相关。本研究强调了血管分支角度作为控制动脉粥样硬化-内皮功能障碍的关键决定因素之一的重要性。