Yan Lei, Jin Haotian, Raza Ali, Huang Yang, Gu Deping, Zou Xiaoyun
Institute of Crops, Jiangxi Academy of Agricultural Sciences, Nanchang, China.
College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China.
Front Plant Sci. 2022 Sep 20;13:986673. doi: 10.3389/fpls.2022.986673. eCollection 2022.
As one of the most important and largest transcription factors, WRKY plays a critical role in plant disease resistance. However, little is known regarding the functions of the WRKY family in cultivated peanuts ( L.). In this study, a total of 174 WRKY genes () were identified from the genome of cultivated peanuts. Phylogenetic analysis revealed that AhWRKY proteins could be divided into four groups, including 35 (20.12%) in group I, 107 (61.49%) in group II, 31 (17.82%) in group III, and 1 (0.57%) in group IV. This division is further supported by the conserved motif compositions and intron/exon structures. All genes were unevenly located on all 20 chromosomes, among which 132 pairs of fragment duplication and seven pairs of tandem duplications existed. Eighteen miRNAs were found to be targeting 50 genes. Most genes from some groups showed tissue-specific expression. , and were upregulated in ganhua18 and kainong313 genotypes after infection. Ten genes (, and ) from group III displayed different expression patterns in sensitive and resistant peanut genotypes infected with the . Two AhWRKY genes ( and ) from group III obtained the LRR domain. downregulated in both genotypes; showed lower-higher expression in ganhua18 and higher expression in kainong313. Both and are targeted by ahy-miR3512, which may have an important function in peanut disease resistance. This study identified candidate genes with possible roles in peanut resistance against infection. These findings not only contribute to our understanding of the novel role of family genes but also provide valuable information for disease resistance in .
作为最重要且最大的转录因子之一,WRKY在植物抗病性中发挥着关键作用。然而,关于WRKY家族在栽培花生(Arachis hypogaea L.)中的功能却知之甚少。在本研究中,从栽培花生基因组中总共鉴定出174个WRKY基因(AhWRKY)。系统发育分析表明,AhWRKY蛋白可分为四组,其中第I组有35个(20.12%),第II组有107个(61.49%),第III组有31个(17.82%),第IV组有1个(0.57%)。保守基序组成和内含子/外显子结构进一步支持了这种划分。所有AhWRKY基因不均匀地分布在全部20条染色体上,其中存在132对片段重复和7对串联重复。发现18个miRNA靶向50个AhWRKY基因。一些组中的大多数AhWRKY基因表现出组织特异性表达。AhWRKY18、AhWRKY40和AhWRKY71在感花18号和开农313基因型中接种青枯病菌后上调表达。第III组的10个AhWRKY基因(AhWRKY2、AhWRKY3、AhWRKY4、AhWRKY5、AhWRKY6、AhWRKY7、AhWRKY8、AhWRKY9、AhWRKY10和AhWRKY11)在接种青枯病菌的感病和抗病花生基因型中表现出不同的表达模式。第III组的两个AhWRKY基因(AhWRKY2和AhWRKY3)获得了LRR结构域。AhWRKY2在两种基因型中均下调表达;AhWRKY3在感花18号中表现出先低后高的表达,在开农313中表达较高。AhWRKY2和AhWRKY3均被ahy-miR3512靶向,这可能在花生抗病性中具有重要作用。本研究鉴定了在花生抗青枯病菌感染中可能发挥作用的候选AhWRKY基因。这些发现不仅有助于我们理解WRKY家族基因的新作用,也为花生抗病性提供了有价值的信息。