Suppr超能文献

重新思考标注粒度以克服基于深度学习的X光片诊断中的捷径:一项多中心研究

Rethinking Annotation Granularity for Overcoming Shortcuts in Deep Learning-based Radiograph Diagnosis: A Multicenter Study.

作者信息

Luo Luyang, Chen Hao, Xiao Yongjie, Zhou Yanning, Wang Xi, Vardhanabhuti Varut, Wu Mingxiang, Han Chu, Liu Zaiyi, Fang Xin Hao Benjamin, Tsougenis Efstratios, Lin Huangjing, Heng Pheng-Ann

机构信息

Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong, China (L.L., Y.Z., X.W., H.L., P.A.H.); Department of Computer Science and Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, 3/F Academic Building, Kowloon, Hong Kong, China (H.C.); AI Research Laboratory, Imsight Technology, Shenzhen, China (Y.X., H.L.); Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China (V.V.); Department of Radiology, Shenzhen People's Hospital, Luohu, Shenzhen, China (M.W.); Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China (C.H., Z.L.); Department of Radiology, Queen Mary Hospital, Hong Kong, China (X.H.B.F.); Artificial Intelligence Laboratory, Head Office Information Technology and Health Informatics Division, Hospital Authority, Hong Kong, China (E.T.); and Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China (P.A.H.).

出版信息

Radiol Artif Intell. 2022 Jul 20;4(5):e210299. doi: 10.1148/ryai.210299. eCollection 2022 Sep.

Abstract

PURPOSE

To evaluate the ability of fine-grained annotations to overcome shortcut learning in deep learning (DL)-based diagnosis using chest radiographs.

MATERIALS AND METHODS

Two DL models were developed using radiograph-level annotations (disease present: yes or no) and fine-grained lesion-level annotations (lesion bounding boxes), respectively named CheXNet and CheXDet. A total of 34 501 chest radiographs obtained from January 2005 to September 2019 were retrospectively collected and annotated regarding cardiomegaly, pleural effusion, mass, nodule, pneumonia, pneumothorax, tuberculosis, fracture, and aortic calcification. The internal classification performance and lesion localization performance of the models were compared on a testing set ( = 2922); external classification performance was compared on National Institutes of Health (NIH) Google ( = 4376) and PadChest ( = 24 536) datasets; and external lesion localization performance was compared on the NIH ChestX-ray14 dataset ( = 880). The models were also compared with radiologist performance on a subset of the internal testing set ( = 496). Performance was evaluated using receiver operating characteristic (ROC) curve analysis.

RESULTS

Given sufficient training data, both models performed similarly to radiologists. CheXDet achieved significant improvement for external classification, such as classifying fracture on NIH Google (CheXDet area under the ROC curve [AUC], 0.67; CheXNet AUC, 0.51; < .001) and PadChest (CheXDet AUC, 0.78; CheXNet AUC, 0.55; < .001). CheXDet achieved higher lesion detection performance than CheXNet for most abnormalities on all datasets, such as detecting pneumothorax on the internal set (CheXDet jackknife alternative free-response ROC [JAFROC] figure of merit [FOM], 0.87; CheXNet JAFROC FOM, 0.13; < .001) and NIH ChestX-ray14 (CheXDet JAFROC FOM, 0.55; CheXNet JAFROC FOM, 0.04; < .001).

CONCLUSION

Fine-grained annotations overcame shortcut learning and enabled DL models to identify correct lesion patterns, improving the generalizability of the models. Computer-aided Diagnosis, Conventional Radiography, Convolutional Neural Network (CNN), Deep Learning Algorithms, Machine Learning Algorithms, Localization © RSNA, 2022.

摘要

目的

评估细粒度标注在基于深度学习(DL)的胸部X光片诊断中克服捷径学习的能力。

材料与方法

分别使用X光片级标注(疾病存在:是或否)和细粒度病变级标注(病变边界框)开发了两个DL模型,分别命名为CheXNet和CheXDet。回顾性收集了2005年1月至2019年9月期间获得的34501张胸部X光片,并就心脏扩大、胸腔积液、肿块、结节、肺炎、气胸、肺结核、骨折和主动脉钙化进行了标注。在测试集(n = 2922)上比较了模型的内部分类性能和病变定位性能;在国立卫生研究院(NIH)谷歌(n = 4376)和PadChest(n = 24536)数据集上比较了外部分类性能;在NIH ChestX-ray14数据集(n = 880)上比较了外部病变定位性能。还在内部测试集的一个子集(n = 496)上比较了模型与放射科医生的表现。使用受试者操作特征(ROC)曲线分析评估性能。

结果

在有足够训练数据的情况下,两个模型的表现与放射科医生相似。CheXDet在外部分类方面取得了显著改善,例如在NIH谷歌数据集上对骨折进行分类(CheXDet的ROC曲线下面积[AUC]为0.67;CheXNet的AUC为0.51;P <.001)以及在PadChest数据集上(CheXDet的AUC为0.78;CheXNet的AUC为0.55;P <.001)。在所有数据集上,对于大多数异常情况,CheXDet的病变检测性能都高于CheXNet,例如在内部数据集上检测气胸(CheXDet的刀切法替代自由响应ROC [JAFROC]品质因数[FOM]为0.87;CheXNet的JAFROC FOM为0.13;P <.001)以及在NIH ChestX-ray14数据集上(CheXDet的JAFROC FOM为0.55;CheXNet的JAFROC FOM为0.04;P <.001)。

结论

细粒度标注克服了捷径学习,使DL模型能够识别正确的病变模式,提高了模型的泛化能力。计算机辅助诊断、传统放射学、卷积神经网络(CNN)、深度学习算法、机器学习算法、定位 © RSNA,2022年。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/327c/9530769/d8e4970ec5b5/ryai.210299.VA.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验