Suppr超能文献

使用多参数 MRI 区分脑肿瘤与放射性坏死:在 4.7T 下使用啮齿动物模型的初步结果。

Towards differentiation of brain tumor from radiation necrosis using multi-parametric MRI: Preliminary results at 4.7 T using rodent models.

机构信息

Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, United States.

Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, United States; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.

出版信息

Magn Reson Imaging. 2022 Dec;94:144-150. doi: 10.1016/j.mri.2022.10.002. Epub 2022 Oct 6.

Abstract

BACKGROUND

It remains a clinical challenge to differentiate brain tumors from radiation-induced necrosis in the brain. Despite significant improvements, no single MRI method has been validated adequately in the clinical setting.

METHODS

Multi-parametric MRI (mpMRI) was performed to differentiate 9L gliosarcoma from radiation necrosis in animal models. Five types of MRI methods probed complementary information on different scales i.e., T (relaxation), CEST based APT (probing mobile proteins/peptides) and rNOE (mobile macromolecules), qMT (macromolecules), diffusion based ADC (cell density) and SSIFT iAUC (cell size), and perfusion based DSC (blood volume and flow).

RESULTS

For single MRI parameters, iAUC and ADC provide the best discrimination of radiation necrosis and brain tumor. For mpMRI, a combination of iAUC, ADC, and APT shows the best classification performance based on a two-step analysis with the Lasso and Ridge regressions.

CONCLUSION

A general mpMRI approach is introduced to choosing candidate multiple MRI methods, identifying the most effective parameters from all the mpMRI parameters, and finding the appropriate combination of chosen parameters to maximize the classification performance to differentiate tumors from radiation necrosis.

摘要

背景

区分脑肿瘤和脑放射性坏死仍然是临床面临的挑战。尽管有了显著的进步,但在临床环境中,没有一种单一的 MRI 方法得到充分验证。

方法

对动物模型中的 9L 胶质肉瘤和放射性坏死进行多参数 MRI(mpMRI)检查,以区分开来。五种类型的 MRI 方法从不同尺度探测互补信息,即 T(弛豫)、CEST 基于 APT(探测移动蛋白/肽)和 rNOE(移动大分子)、qMT(大分子)、基于扩散的 ADC(细胞密度)和 SSIFT iAUC(细胞大小)以及基于灌注的 DSC(血容量和血流)。

结果

对于单个 MRI 参数,iAUC 和 ADC 可最好地区分放射性坏死和脑肿瘤。对于 mpMRI,使用 Lasso 和 Ridge 回归的两步分析,基于 iAUC、ADC 和 APT 的组合显示出最佳的分类性能。

结论

介绍了一种通用的 mpMRI 方法来选择候选的多种 MRI 方法,从所有 mpMRI 参数中确定最有效的参数,并找到所选参数的适当组合,以最大限度地提高区分肿瘤和放射性坏死的分类性能。

相似文献

2
Distinguishing Tumor Recurrence From Radiation Necrosis in Treated Glioblastoma Using Multiparametric MRI.
Acad Radiol. 2022 Sep;29(9):1320-1331. doi: 10.1016/j.acra.2021.11.008. Epub 2021 Dec 9.
3
Selective Cell Size MRI Differentiates Brain Tumors from Radiation Necrosis.
Cancer Res. 2022 Oct 4;82(19):3603-3613. doi: 10.1158/0008-5472.CAN-21-2929.
5
Contrast-Enhanced Perfusion MR Imaging to Differentiate Between Recurrent/Residual Brain Neoplasms and Radiation Necrosis.
Asian Pac J Cancer Prev. 2018 Apr 25;19(4):941-948. doi: 10.22034/APJCP.2018.19.4.941.
9
Assessment of MRI parameters as imaging biomarkers for radiation necrosis in the rat brain.
Int J Radiat Oncol Biol Phys. 2012 Jul 1;83(3):e431-6. doi: 10.1016/j.ijrobp.2011.12.087. Epub 2012 Apr 5.

引用本文的文献

1
Adaptive Radiation Therapy for Head and Neck Cancer.
ArXiv. 2025 Aug 1:arXiv:2508.00651v1.
2
Advances in the application of neuroinflammatory molecular imaging in brain malignancies.
Front Immunol. 2023 Jul 18;14:1211900. doi: 10.3389/fimmu.2023.1211900. eCollection 2023.

本文引用的文献

1
Rodent Model of Brain Radionecrosis Using Clinical LINAC-Based Stereotactic Radiosurgery.
Adv Radiat Oncol. 2022 Jul 19;7(6):101014. doi: 10.1016/j.adro.2022.101014. eCollection 2022 Nov-Dec.
2
Selective Cell Size MRI Differentiates Brain Tumors from Radiation Necrosis.
Cancer Res. 2022 Oct 4;82(19):3603-3613. doi: 10.1158/0008-5472.CAN-21-2929.
5
MRI of tumor T cell infiltration in response to checkpoint inhibitor therapy.
J Immunother Cancer. 2020 Jun;8(1). doi: 10.1136/jitc-2019-000328.
7
Magnetic resonance imaging of mean cell size in human breast tumors.
Magn Reson Med. 2020 Jun;83(6):2002-2014. doi: 10.1002/mrm.28056. Epub 2019 Nov 25.
8
MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation.
Neuroimage. 2019 Nov 15;202:116137. doi: 10.1016/j.neuroimage.2019.116137. Epub 2019 Aug 29.
9
Multiparametric MRI for prostate cancer diagnosis: current status and future directions.
Nat Rev Urol. 2020 Jan;17(1):41-61. doi: 10.1038/s41585-019-0212-4. Epub 2019 Jul 17.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验