Suppr超能文献

Per-COVID-19:用于从CT扫描估计COVID-19感染率的基准数据集。

Per-COVID-19: A Benchmark Dataset for COVID-19 Percentage Estimation from CT-Scans.

作者信息

Bougourzi Fares, Distante Cosimo, Ouafi Abdelkrim, Dornaika Fadi, Hadid Abdenour, Taleb-Ahmed Abdelmalik

机构信息

Institute of Applied Sciences and Intelligent Systems, National Research Council of Italy, 73100 Lecce, Italy.

Laboratory of LESIA, University of Biskra, Biskra 7000, Algeria.

出版信息

J Imaging. 2021 Sep 18;7(9):189. doi: 10.3390/jimaging7090189.

Abstract

COVID-19 infection recognition is a very important step in the fight against the COVID-19 pandemic. In fact, many methods have been used to recognize COVID-19 infection including Reverse Transcription Polymerase Chain Reaction (RT-PCR), X-ray scan, and Computed Tomography scan (CT- scan). In addition to the recognition of the COVID-19 infection, CT scans can provide more important information about the evolution of this disease and its severity. With the extensive number of COVID-19 infections, estimating the COVID-19 percentage can help the intensive care to free up the resuscitation beds for the critical cases and follow other protocol for less severity cases. In this paper, we introduce COVID-19 percentage estimation dataset from CT-scans, where the labeling process was accomplished by two expert radiologists. Moreover, we evaluate the performance of three Convolutional Neural Network (CNN) architectures: ResneXt-50, Densenet-161, and Inception-v3. For the three CNN architectures, we use two loss functions: MSE and Dynamic Huber. In addition, two pretrained scenarios are investigated (ImageNet pretrained models and pretrained models using X-ray data). The evaluated approaches achieved promising results on the estimation of COVID-19 infection. Inception-v3 using Dynamic Huber loss function and pretrained models using X-ray data achieved the best performance for slice-level results: 0.9365, 5.10, and 9.25 for Pearson Correlation coefficient (PC), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE), respectively. On the other hand, the same approach achieved 0.9603, 4.01, and 6.79 for PCsubj, MAEsubj, and RMSEsubj, respectively, for subject-level results. These results prove that using CNN architectures can provide accurate and fast solution to estimate the COVID-19 infection percentage for monitoring the evolution of the patient state.

摘要

新冠病毒感染识别是抗击新冠疫情的非常重要的一步。事实上,已经使用了许多方法来识别新冠病毒感染,包括逆转录聚合酶链反应(RT-PCR)、X射线扫描和计算机断层扫描(CT扫描)。除了识别新冠病毒感染外,CT扫描还可以提供有关这种疾病的演变及其严重程度的更重要信息。随着新冠病毒感染数量的大量增加,估计新冠病毒感染百分比有助于重症监护室为重症病例腾出复苏床位,并对病情较轻的病例遵循其他方案。在本文中,我们介绍了来自CT扫描的新冠病毒感染百分比估计数据集,其中标记过程由两位放射科专家完成。此外,我们评估了三种卷积神经网络(CNN)架构的性能:ResneXt-50、Densenet-161和Inception-v3。对于这三种CNN架构,我们使用了两种损失函数:均方误差(MSE)和动态Huber损失函数。此外,还研究了两种预训练场景(ImageNet预训练模型和使用X射线数据的预训练模型)。所评估的方法在新冠病毒感染估计方面取得了有希望的结果。使用动态Huber损失函数的Inception-v3和使用X射线数据的预训练模型在切片级结果方面取得了最佳性能:皮尔逊相关系数(PC)为0.9365、平均绝对误差(MAE)为5.10、均方根误差(RMSE)为9.25。另一方面,对于受试者级结果,相同的方法分别取得了PCsubj为0.9603、MAEsubj为4.01和RMSEsubj为6.79。这些结果证明,使用CNN架构可以提供准确快速的解决方案来估计新冠病毒感染百分比,以监测患者状态的演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61df/8468956/a6c5d6a1b559/jimaging-07-00189-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验