Suppr超能文献

基于 YouTube 的视频质量控制研究:在线视频资源在颈椎病患者教育中的质量。

Quality of online video resources concerning patient education for neck pain: A YouTube-based quality-control study.

机构信息

Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.

出版信息

Front Public Health. 2022 Sep 21;10:972348. doi: 10.3389/fpubh.2022.972348. eCollection 2022.

Abstract

BACKGROUND

More than 70 percent of the world's population is tortured with neck pain more than once in their vast life, of which 50-85% recur within 1-5 years of the initial episode. With medical resources affected by the epidemic, more and more people seek health-related knowledge YouTube. This article aims to assess the quality and reliability of the medical information shared on YouTube regarding neck pain.

METHODS

We searched on YouTube using the keyword "neck pain" to include the top 50 videos by relevance, then divided them into five and seven categories based on their content and source. Each video was quantitatively assessed using the Journal of American Medical Association (JAMA), DISCERN, Global Quality Score (GQS), Neck Pain-Specific Score (NPSS), and video power index (VPI). Spearman correlation analysis was used to evaluate the correlation between JAMA, GQS, DISCERN, NPSS and VPI. A multiple linear regression analysis was applied to identify video features affecting JAMA, GQS, DISCERN, and NPSS.

RESULTS

The videos had a mean JAMA score of 2.56 (SD = 0.43), DISCERN of 2.55 (SD = 0.44), GQS of 2.86 (SD = 0.72), and NPSS of 2.90 (SD = 2.23). Classification by video upload source, non-physician videos had the greatest share at 38%, and sorted by video content, exercise training comprised 40% of the videos. Significant differences between the uploading sources were observed for VPI ( = 0.012), JAMA ( < 0.001), DISCERN ( < 0.001), GQS ( = 0.001), and NPSS ( = 0.007). Spearman correlation analysis showed that JAMA, DISCERN, GQS, and NPSS significantly correlated with each other (JAMA vs. DISCERN, < 0.001, JAMA vs. GQS, < 0.001, JAMA vs. NPSS, < 0.001, DISCERN vs. GQS, < 0.001, DISCERN vs. NPSS, < 0.001, GQS vs. NPSS, < 0.001). Multiple linear regression analysis suggested that a higher JAMA score, DISCERN, or GQS score were closely related to a higher probability of an academic, physician, non-physician or medical upload source ( < 0.005), and a higher NPSS score was associated with a higher probability of an academic source ( = 0.001) than of an individual upload source.

CONCLUSIONS

YouTube videos pertaining to neck pain contain low quality, low reliability, and incomplete information. Patients may be put at risk for health complications due to inaccurate, and incomplete information, particularly during the COVID-19 crisis. Academic groups should be committed to high-quality video production and promotion to YouTube users.

摘要

背景

全球超过 70%的人口在其漫长的一生中不止一次遭受颈部疼痛的折磨,其中 50-85%在初次发作后 1-5 年内复发。随着医疗资源受到疫情影响,越来越多的人在 YouTube 上寻求健康相关的知识。本文旨在评估有关颈部疼痛的 YouTube 上分享的医学信息的质量和可靠性。

方法

我们使用关键词“颈部疼痛”在 YouTube 上进行搜索,以相关性为依据纳入前 50 个视频,然后根据其内容和来源将其分为五类和七类。使用美国医学会杂志(JAMA)、DISCERN、全球质量评分(GQS)、颈部疼痛特定评分(NPSS)和视频功率指数(VPI)对每个视频进行定量评估。采用 Spearman 相关分析评估 JAMA、GQS、DISCERN、NPSS 和 VPI 之间的相关性。应用多元线性回归分析确定影响 JAMA、GQS、DISCERN 和 NPSS 的视频特征。

结果

视频的 JAMA 评分为 2.56(SD=0.43),DISCERN 评分为 2.55(SD=0.44),GQS 评分为 2.86(SD=0.72),NPSS 评分为 2.90(SD=2.23)。按视频上传来源分类,非医师视频占比最大,为 38%,按视频内容分类,运动训练占比 40%。上传来源之间在 VPI( = 0.012)、JAMA(<0.001)、DISCERN(<0.001)、GQS( = 0.001)和 NPSS( = 0.007)方面存在显著差异。Spearman 相关分析表明,JAMA、DISCERN、GQS 和 NPSS 彼此之间显著相关(JAMA 与 DISCERN,<0.001;JAMA 与 GQS,<0.001;JAMA 与 NPSS,<0.001;DISCERN 与 GQS,<0.001;DISCERN 与 NPSS,<0.001;GQS 与 NPSS,<0.001)。多元线性回归分析表明,较高的 JAMA 评分、DISCERN 或 GQS 评分与更高的学术、医师、非医师或医学上传来源的概率密切相关(<0.005),而较高的 NPSS 评分与更高的学术来源的概率相关( = 0.001)而非个人上传来源。

结论

YouTube 上有关颈部疼痛的视频质量低、可靠性低且信息不完整。不准确和不完整的信息可能会使患者面临健康并发症的风险,尤其是在 COVID-19 危机期间。学术团体应致力于向 YouTube 用户制作和推广高质量的视频。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/167d/9533122/6e8de661debb/fpubh-10-972348-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验