Maryland Energy Innovation Institute, University of Maryland, College Park, MD 20742, USA.
Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA.
Angew Chem Int Ed Engl. 2017 Nov 20;56(47):14942-14947. doi: 10.1002/anie.201708637. Epub 2017 Oct 19.
The interface between solid electrolytes and Li metal is a primary issue for solid-state batteries. Introducing a metal interlayer to conformally coat solid electrolytes can improve the interface wettability of Li metal and reduce the interfacial resistance, but the mechanism of the metal interlayer is unknown. In this work, we used magnesium (Mg) as a model to investigate the effect of a metal coating on the interfacial resistance of a solid electrolyte and Li metal anode. The Li-Mg alloy has low overpotential, leading to a lower interfacial resistance. Our motivation is to understand how the metal interlayer behaves at the interface to promote increased Li-metal wettability of the solid electrolyte surface and reduce interfacial resistance. Surprisingly, we found that the metal coating dissolved in the molten piece of Li and diffused into the bulk Li metal, leading to a small and stable interfacial resistance between the garnet solid electrolyte and the Li metal. We also found that the interfacial resistance did not change with increase in the thickness of the metal coating (5, 10, and 100 nm), due to the transient behavior of the metal interface layer.
固体电解质与锂金属之间的界面是固态电池的一个主要问题。在固体电解质上引入金属层以实现共形包覆,可以改善锂金属的界面润湿性并降低界面电阻,但金属层的作用机制尚不清楚。在这项工作中,我们以镁(Mg)为模型,研究了金属涂层对固体电解质和锂金属阳极界面电阻的影响。Li-Mg 合金具有较低的过电位,导致界面电阻较低。我们的动机是了解金属层在界面上的行为如何促进固体电解质表面对锂金属的润湿性增加并降低界面电阻。出人意料的是,我们发现金属涂层溶解在熔融的 Li 中并扩散到大块 Li 金属中,从而导致石榴石固体电解质与 Li 金属之间的界面电阻较小且稳定。我们还发现,由于金属界面层的瞬态行为,界面电阻不会随金属涂层厚度(5、10 和 100nm)的增加而变化。