Yang Mingxi, Xia Meiyun, Zhang Shen, Wu Di, Li Deyu, Hou Xinlin, Wang Daifa
Beihang University, Ministry of Education, School of Biological Science and Medical Engineering, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Biomechanics and Mechanobiology, Beijing, China.
Beihang University, School of Mechanical Engineering and Automation, State Key Laboratory of Virtual Reality Technology and System, Beijing, China.
Neurophotonics. 2022 Oct;9(4):045002. doi: 10.1117/1.NPh.9.4.045002. Epub 2022 Oct 22.
Functional near-infrared spectroscopy (fNIRS) for resting-state neonatal brain function evaluation provides assistance for pediatricians in diagnosis and monitoring treatment outcomes. Artifact contamination is an important challenge in the application of fNIRS in the neonatal population.
Our study aims to develop a correction algorithm that can effectively remove different types of artifacts from neonatal data.
In the study, we estimate the recognition threshold based on the amplitude characteristics of the signal and artifacts. After artifact recognition, Spline and Gaussian replacements are used separately to correct the artifacts. Various correction method recovery effects on simulated artifact and actual neonatal data are compared using the Pearson correlation ( ) and root mean square error (). Simulated data connectivity recovery is used to compare various method performances.
The neonatal resting-state data corrected by our method showed better agreement with results by visual recognition and correction, and significant improvements ( , ; paired -test, ** ). Moreover, the method showed a higher degree of recovery of connectivity in simulated data.
The proposed algorithm corrects artifacts such as baseline shifts, spikes, and serial disturbances in neonatal fNIRS data quickly and more effectively. It can be used for preprocessing in clinical applications of neonatal fNIRS brain function detection.
用于静息态新生儿脑功能评估的功能近红外光谱技术(fNIRS)为儿科医生的诊断和治疗效果监测提供了帮助。伪迹干扰是fNIRS在新生儿群体中应用的一项重要挑战。
我们的研究旨在开发一种校正算法,能够有效去除新生儿数据中的不同类型伪迹。
在本研究中,我们基于信号和伪迹的幅度特征估计识别阈值。在识别伪迹后,分别使用样条插值和高斯替换来校正伪迹。使用Pearson相关系数( )和均方根误差()比较各种校正方法对模拟伪迹和实际新生儿数据的恢复效果。使用模拟数据连通性恢复来比较各种方法的性能。
我们的方法校正后的新生儿静息态数据与视觉识别和校正的结果显示出更好的一致性,并且有显著改善( , ;配对 -检验,** )。此外,该方法在模拟数据中显示出更高的连通性恢复程度。
所提出的算法能够快速且更有效地校正新生儿fNIRS数据中的基线漂移、尖峰和序列干扰等伪迹。它可用于新生儿fNIRS脑功能检测临床应用中的预处理。