Zawani Mazlan, Maarof Manira, Tabata Yasuhiko, Motta Antonella, Fauzi Mh Busra
Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia.
Laboratory of Biomaterials, Department of Regeneration Science and Engineering, Institute for Life and Medical Science (LiMe), Kyoto University, 53 Kawara-cho Shogoin, Sakyo-Ku, Kyoto 606-8500, Japan.
Gels. 2022 Sep 29;8(10):623. doi: 10.3390/gels8100623.
Chronic wounds have become an epidemic in millions of patients and result in amputations. In order to overcome this, immediate treatment is a realistic strategy to minimize the risk of complications and aid in the healing rate of the cutaneous wound. Functionalized engineered biomaterials are proven to be a potential approach to embarking on skin wound management. Thus, this study aimed to evaluate the efficacy of a quercetin-embedded gelatin−elastin (Gelastin) injectable hydrogel to act as a provisional biotemplate with excellent physicochemical properties, to be utilized for future cutaneous application. Briefly, the hydrogel was homogenously pre-mixed with genipin (GNP), followed by the incorporation of quercetin (QC). The physicochemical properties comprised the contact angle, swelling ratio, crosslinking degree, enzymatic biodegradation, and water vapor transmission rate (WVTR), as well as chemical characterization. Energy-dispersive X-ray (EDX), XRD, and Fourier transform infra-red (FTIR) analyses were conducted. Briefly, the findings demonstrated that the crosslinked hybrid biomatrix demonstrated better resilience at >100%, a contact angle of >20°, a swelling ratio average of 500 ± 10%, a degradation rate of <0.05 mg/hour, and a successful crosslinking degree (<70%free amine group), compared to the non-crosslinked hybrid biomatrix. In addition, the WVTR was >1500 g/m2 h, an optimal moisture content designed to attain regular cell function and proliferation. The outcomes convey that Gelastin-QC hydrogels deliver the optimum features to be used as a provisional biotemplate for skin tissue engineering purposes.
慢性伤口已在数百万患者中泛滥成灾,并导致截肢。为了克服这一问题,立即进行治疗是一种切实可行的策略,可将并发症风险降至最低,并有助于提高皮肤伤口的愈合速度。功能化工程生物材料已被证明是一种用于皮肤伤口管理的潜在方法。因此,本研究旨在评估一种嵌入槲皮素的明胶-弹性蛋白(Gelastin)可注射水凝胶作为具有优异物理化学性质的临时生物模板的功效,以用于未来的皮肤应用。简而言之,将水凝胶与京尼平(GNP)均匀预混合,然后加入槲皮素(QC)。物理化学性质包括接触角、溶胀率、交联度、酶促生物降解、水蒸气透过率(WVTR)以及化学表征。进行了能量色散X射线(EDX)、X射线衍射(XRD)和傅里叶变换红外(FTIR)分析。简而言之,研究结果表明,与未交联的杂化生物基质相比,交联的杂化生物基质在>100%时表现出更好的弹性,接触角>20°,平均溶胀率为500±10%,降解率<0.05毫克/小时,交联度成功(游离胺基团<70%)。此外,WVTR>1500克/平方米·小时,这是为实现正常细胞功能和增殖而设计的最佳水分含量。结果表明,Gelastin-QC水凝胶具有作为皮肤组织工程临时生物模板的最佳特性。