Suppr超能文献

门控分割扩散模型:一种用于皮肤病变分割的门控融合扩散模型。

GatedSegDiff: a gated fusion diffusion model for skin lesion segmentation.

作者信息

Wang Rui, Yao Liucheng, Zeng Jiawen, Chen Xiaofei, Wang Haiquan, Qian Chunhua, Wang Xiangyang

机构信息

School of Communication and Information Engineering, Shanghai University, Shanghai, 200444, China.

Department of General Surgery, Shanghai General Hospital of Shanghai Jiao Tong University, Shanghai, 200080, China.

出版信息

Med Biol Eng Comput. 2025 Sep;63(9):2637-2650. doi: 10.1007/s11517-025-03337-7. Epub 2025 Mar 18.

Abstract

Skin lesion segmentation is a vital process in skin disease diagnosis, crucial for maintaining diagnostic precision. Despite progress in existing image segmentation methods, challenges remain in handling the fuzzy boundaries of skin lesion areas. To address this, we developed GatedSegDiff-a dedicated end-to-end framework for melanoma skin lesion image segmentation. Innovatively integrating the semantic representation capabilities of denoising networks with a novel gated attention fusion module, this model effectively merges feature maps across various scales, enhancing segmentation precision. We evaluate our model on the ISIC 2017, ISIC 2018, and PH2 image datasets. For the IoU score, our model achieved an average increase of 4.3% across three datasets, while the HD95 score decreased by 1.5%. GatedSegDiff outperforms existing advanced methods across multiple performance metrics, showing significant progress in skin lesion segmentation tasks and validating its effectiveness within this specific domain. Impact statement-The GatedSegDiff model's innovative application in medical image segmentation, particularly in skin lesion segmentation, significantly enhances diagnostic precision and efficiency. By concentrating on information in lesion boundary areas, it substantially improves segmentation accuracy for lesions with fuzzy boundaries, which is crucial for the early diagnosis of serious skin diseases like melanoma. Additionally, it provides a solution to the shortcomings of general medical image segmentation methods in handling specific skin lesions, its applicability to other types of medical images requires further investigation. The model's outstanding performance on multiple skin lesion datasets highlights its potential for application in digital dermatological diagnosis, offering faster and more reliable services to patients, with significant implications for clinical use in the field of skin disease diagnosis. Melanin segmentation can be applied to medical integrated classification techniques to help experts select the most suitable treatment options for patients.

摘要

皮肤病变分割是皮肤病诊断中的一个重要过程,对于保持诊断精度至关重要。尽管现有图像分割方法取得了进展,但在处理皮肤病变区域的模糊边界方面仍存在挑战。为了解决这一问题,我们开发了GatedSegDiff——一种用于黑色素瘤皮肤病变图像分割的专用端到端框架。该模型创新性地将去噪网络的语义表示能力与新颖的门控注意力融合模块相结合,有效地融合了不同尺度的特征图,提高了分割精度。我们在ISIC 2017、ISIC 2018和PH2图像数据集上对我们的模型进行了评估。对于交并比(IoU)分数,我们的模型在三个数据集上平均提高了4.3%,而豪斯多夫距离95(HD95)分数下降了1.5%。GatedSegDiff在多个性能指标上优于现有的先进方法,在皮肤病变分割任务中取得了显著进展,并验证了其在这一特定领域的有效性。影响声明——GatedSegDiff模型在医学图像分割,特别是皮肤病变分割中的创新应用,显著提高了诊断精度和效率。通过专注于病变边界区域的信息,它大大提高了具有模糊边界的病变的分割准确性,这对于黑色素瘤等严重皮肤病的早期诊断至关重要。此外,它为一般医学图像分割方法在处理特定皮肤病变方面的缺点提供了一种解决方案,其对其他类型医学图像的适用性需要进一步研究。该模型在多个皮肤病变数据集上的出色表现突出了其在数字皮肤病诊断中的应用潜力,为患者提供更快、更可靠的服务,对皮肤病诊断领域的临床应用具有重要意义。黑色素分割可应用于医学综合分类技术,以帮助专家为患者选择最合适的治疗方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验