Suppr超能文献

基于证据的格拉斯哥结局量表与改良 Rankin 量表的换算:陷阱与最佳实践。

Evidence-based interconversion of the Glasgow Outcome and modified Rankin scales: pitfalls and best practices.

机构信息

Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 6YD, UK; Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK.

School of Nursing, University of Pittsburgh, Pittsburgh, PA, United States.

出版信息

J Stroke Cerebrovasc Dis. 2022 Dec;31(12):106845. doi: 10.1016/j.jstrokecerebrovasdis.2022.106845. Epub 2022 Oct 26.

Abstract

OBJECTIVE

The aim of this study was to provide the evidence base to guide interconversion of the modified Rankin Scale (mRS) and Glasgow Outcome Scale (GOS) in neurological research.

METHODS

A retrospective analysis of paired mRS and GOS recordings was conducted using datasets with the following selection criteria: (1) patients had haemorrhagic stroke, (2) simultaneous mRS and GOS measurements were available, and (3) data sharing was possible. The relationship between mRS and GOS was assessed using correlation analysis. The optimum dichotomisation thresholds for agreement between the mRS and GOS were identified using Cohen's kappa coefficient. Two-way conversion tables between mRS and GOS were developed based on the highest agreement between scores. Finally, to identify which direction of conversion (mRS to GOS or vice versa) was better, the Kolmogorov-Smirnov D statistic was calculated.

RESULTS

Using 3474 paired recordings the mRS and GOS were shown to be highly correlated (ρ = 0.90, p < 0.0001). The greatest agreement between the two scoring systems occurred when mRS=0-2 and GOS=4-5 was used to define good outcome (κ=0.83, 95% confidence interval: 0.81-0.85). Converting from mRS to GOS was better than the reverse direction as evidenced by a lower Kolmogorov-Smirnov statistic (D=0.054 compared to D=0.157).

CONCLUSIONS

This study demonstrates that the mRS and GOS are highly correlated, establishes the optimum dichotomisation threshold for agreement, provides a method for interconversion and shows that mRS to GOS conversion is superior to the reverse direction if a choice is available.

摘要

目的

本研究旨在提供循证医学依据,以指导改良 Rankin 量表(mRS)与 Glasgow 结局量表(GOS)在神经科研究中的相互转换。

方法

采用符合以下选择标准的配对 mRS 和 GOS 记录数据集进行回顾性分析:(1)患者患有出血性脑卒中;(2)同时可获得 mRS 和 GOS 测量结果;(3)可进行数据共享。采用相关分析评估 mRS 与 GOS 之间的关系。使用 Cohen's kappa 系数确定 mRS 和 GOS 之间一致性的最佳二分阈值。根据评分之间的最高一致性,制定 mRS 与 GOS 之间的双向转换表。最后,通过计算 Kolmogorov-Smirnov D 统计量,确定转换方向(mRS 到 GOS 或反之)更好。

结果

使用 3474 对配对记录,mRS 和 GOS 高度相关(ρ=0.90,p<0.0001)。当使用 mRS=0-2 和 GOS=4-5 来定义良好结局时,两种评分系统之间具有最佳一致性(κ=0.83,95%置信区间:0.81-0.85)。与相反方向相比,从 mRS 转换为 GOS 的效果更好,这一点通过更低的 Kolmogorov-Smirnov 统计量(D=0.054 与 D=0.157)得到证明。

结论

本研究表明,mRS 和 GOS 高度相关,确定了最佳二分阈值,提供了一种相互转换的方法,并证明如果可以选择,mRS 到 GOS 的转换优于相反方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c101/11295112/b27ca3980765/nihms-2008309-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验