College of Pharmaceutical Sciences, Zhejiang University, 310058, Hangzhou, China.
Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, 314100, Jiaxing, China.
Nat Commun. 2022 Oct 30;13(1):6498. doi: 10.1038/s41467-022-34271-z.
Uncovering the tissue molecular architecture at single-cell resolution could help better understand organisms' biological and pathological processes. However, bulk RNA-seq can only measure gene expression in cell mixtures, without revealing the transcriptional heterogeneity and spatial patterns of single cells. Herein, we introduce Bulk2Space ( https://github.com/ZJUFanLab/bulk2space ), a deep learning framework-based spatial deconvolution algorithm that can simultaneously disclose the spatial and cellular heterogeneity of bulk RNA-seq data using existing single-cell and spatial transcriptomics references. The use of bulk transcriptomics to validate Bulk2Space unveils, in particular, the spatial variance of immune cells in different tumor regions, the molecular and spatial heterogeneity of tissues during inflammation-induced tumorigenesis, and spatial patterns of novel genes in different cell types. Moreover, Bulk2Space is utilized to perform spatial deconvolution analysis on bulk transcriptome data from two different mouse brain regions derived from our in-house developed sequencing approach termed Spatial-seq. We have not only reconstructed the hierarchical structure of the mouse isocortex but also further annotated cell types that were not identified by original methods in the mouse hypothalamus.
揭示单细胞分辨率下的组织分子结构有助于更好地理解生物和病理过程。然而,批量 RNA-seq 只能测量细胞混合物中的基因表达,而无法揭示单细胞的转录异质性和空间模式。在此,我们介绍了 Bulk2Space(https://github.com/ZJUFanLab/bulk2space),这是一种基于深度学习框架的空间去卷积算法,可以利用现有的单细胞和空间转录组学参考资料,同时揭示批量 RNA-seq 数据的空间和细胞异质性。利用批量转录组学来验证 Bulk2Space,可以特别揭示不同肿瘤区域免疫细胞的空间变化、炎症诱导肿瘤发生过程中组织的分子和空间异质性,以及不同细胞类型中新型基因的空间模式。此外,我们还利用 Bulk2Space 对源自我们自主开发的称为 Spatial-seq 的测序方法的两个不同小鼠脑区的批量转录组数据进行了空间去卷积分析。我们不仅重建了小鼠大脑皮层的层次结构,而且还进一步注释了小鼠下丘脑中原方法未识别的细胞类型。