Suppr超能文献

使用多目标蒙特卡罗树搜索为激酶同源物设计选择性抑制剂。

Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search.

机构信息

Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama230-0045, Japan.

RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama230-0045, Japan.

出版信息

J Chem Inf Model. 2022 Nov 28;62(22):5351-5360. doi: 10.1021/acs.jcim.2c00787. Epub 2022 Nov 5.

Abstract

Designing highly selective molecules for a drug target protein is a challenging task in drug discovery. This task can be regarded as a multiobjective problem that simultaneously satisfies criteria for various objectives, such as selectivity for a target protein, pharmacokinetic endpoints, and drug-like indices. Recent breakthroughs in artificial intelligence have accelerated the development of molecular structure generation methods, and various researchers have applied them to computational drug designs and successfully proposed promising drug candidates. However, designing efficient selective inhibitors with releasing activities against various homologs of a target protein remains a difficult issue. In this study, we developed a structure generator based on reinforcement learning that is capable of simultaneously optimizing multiobjective problems. Our structure generator successfully proposed selective inhibitors for tyrosine kinases while optimizing 18 objectives consisting of inhibitory activities against 9 tyrosine kinases, 3 pharmacokinetics endpoints, and 6 other important properties. These results show that our structure generator and optimization strategy for selective inhibitors will contribute to the further development of practical structure generators for drug designs.

摘要

为药物靶标蛋白设计高选择性的分子是药物发现中的一项具有挑战性的任务。这项任务可以被视为一个多目标问题,需要同时满足多个目标的标准,如对靶蛋白的选择性、药代动力学终点和类药性指数。最近人工智能的突破加速了分子结构生成方法的发展,各种研究人员已经将其应用于计算药物设计,并成功提出了有前途的药物候选物。然而,设计具有针对靶蛋白的各种同源物的释放活性的高效选择性抑制剂仍然是一个难题。在这项研究中,我们开发了一种基于强化学习的结构生成器,该生成器能够同时优化多目标问题。我们的结构生成器成功地提出了针对酪氨酸激酶的选择性抑制剂,同时优化了由 9 种酪氨酸激酶的抑制活性、3 种药代动力学终点和 6 种其他重要性质组成的 18 个目标。这些结果表明,我们的选择性抑制剂的结构生成器和优化策略将有助于进一步开发用于药物设计的实用结构生成器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b55/9709912/c92b98011dca/ci2c00787_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验